Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,26 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
cap = cv2.VideoCapture(video_path)
|
3 |
if not cap.isOpened():
|
4 |
return "Error: Unable to open video file."
|
@@ -8,7 +30,7 @@ def count_unique_trucks(video_path, frame_skip_factor=2):
|
|
8 |
|
9 |
# Get FPS of the video
|
10 |
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
11 |
-
frame_skip = fps *
|
12 |
|
13 |
frame_count = 0
|
14 |
|
@@ -19,7 +41,7 @@ def count_unique_trucks(video_path, frame_skip_factor=2):
|
|
19 |
|
20 |
frame_count += 1
|
21 |
if frame_count % frame_skip != 0:
|
22 |
-
continue # Skip frames
|
23 |
|
24 |
# Run YOLOv12x inference
|
25 |
results = model(frame, verbose=False)
|
@@ -67,23 +89,21 @@ def count_unique_trucks(video_path, frame_skip_factor=2):
|
|
67 |
return {"Total Unique Trucks": len(unique_truck_ids)}
|
68 |
|
69 |
# Gradio UI function
|
70 |
-
def analyze_video(video_file
|
71 |
-
result = count_unique_trucks(video_file
|
72 |
return "\n".join([f"{key}: {value}" for key, value in result.items()])
|
73 |
|
74 |
# Define Gradio interface
|
75 |
import gradio as gr
|
76 |
iface = gr.Interface(
|
77 |
fn=analyze_video,
|
78 |
-
inputs=
|
79 |
-
gr.Video(label="Upload Video"),
|
80 |
-
gr.Slider(minimum=1, maximum=10, step=1, value=2, label="Frame Skip Factor"), # Fixed default value
|
81 |
-
],
|
82 |
outputs=gr.Textbox(label="Analysis Result"),
|
83 |
title="YOLOv12x Unique Truck Counter",
|
84 |
-
description="Upload a video to count unique trucks using YOLOv12x and SORT tracking.
|
85 |
)
|
86 |
|
87 |
# Launch the Gradio app
|
88 |
if __name__ == "__main__":
|
89 |
iface.launch()
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from ultralytics import YOLO
|
5 |
+
from sort import Sort
|
6 |
+
|
7 |
+
# Load YOLOv12x model
|
8 |
+
MODEL_PATH = "yolov12x.pt"
|
9 |
+
model = YOLO(MODEL_PATH)
|
10 |
+
|
11 |
+
# COCO dataset class ID for truck
|
12 |
+
TRUCK_CLASS_ID = 7 # "truck"
|
13 |
+
|
14 |
+
# Initialize SORT tracker
|
15 |
+
tracker = Sort()
|
16 |
+
|
17 |
+
# Minimum confidence threshold for detection
|
18 |
+
CONFIDENCE_THRESHOLD = 0.5
|
19 |
+
|
20 |
+
# Distance threshold to avoid duplicate counts
|
21 |
+
DISTANCE_THRESHOLD = 50
|
22 |
+
|
23 |
+
def count_unique_trucks(video_path):
|
24 |
cap = cv2.VideoCapture(video_path)
|
25 |
if not cap.isOpened():
|
26 |
return "Error: Unable to open video file."
|
|
|
30 |
|
31 |
# Get FPS of the video
|
32 |
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
33 |
+
frame_skip = fps * 2 # Skip frames every 5 seconds
|
34 |
|
35 |
frame_count = 0
|
36 |
|
|
|
41 |
|
42 |
frame_count += 1
|
43 |
if frame_count % frame_skip != 0:
|
44 |
+
continue # Skip frames to process only every 5 seconds
|
45 |
|
46 |
# Run YOLOv12x inference
|
47 |
results = model(frame, verbose=False)
|
|
|
89 |
return {"Total Unique Trucks": len(unique_truck_ids)}
|
90 |
|
91 |
# Gradio UI function
|
92 |
+
def analyze_video(video_file):
|
93 |
+
result = count_unique_trucks(video_file)
|
94 |
return "\n".join([f"{key}: {value}" for key, value in result.items()])
|
95 |
|
96 |
# Define Gradio interface
|
97 |
import gradio as gr
|
98 |
iface = gr.Interface(
|
99 |
fn=analyze_video,
|
100 |
+
inputs=gr.Video(label="Upload Video"),
|
|
|
|
|
|
|
101 |
outputs=gr.Textbox(label="Analysis Result"),
|
102 |
title="YOLOv12x Unique Truck Counter",
|
103 |
+
description="Upload a video to count unique trucks using YOLOv12x and SORT tracking."
|
104 |
)
|
105 |
|
106 |
# Launch the Gradio app
|
107 |
if __name__ == "__main__":
|
108 |
iface.launch()
|
109 |
+
|