Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,28 +2,22 @@ import os
|
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
-
import logging
|
6 |
from ultralytics import YOLO
|
7 |
from sort import Sort
|
8 |
import gradio as gr
|
9 |
|
10 |
-
# Configure logging
|
11 |
-
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
12 |
-
|
13 |
# Load YOLOv12x model
|
14 |
MODEL_PATH = "yolov12x.pt"
|
15 |
-
if not os.path.exists(MODEL_PATH):
|
16 |
-
raise FileNotFoundError(f"Model file '{MODEL_PATH}' not found.")
|
17 |
model = YOLO(MODEL_PATH)
|
18 |
|
19 |
# COCO dataset class ID for truck
|
20 |
TRUCK_CLASS_ID = 7 # "truck"
|
21 |
|
22 |
# Initialize SORT tracker
|
23 |
-
tracker = Sort()
|
24 |
|
25 |
# Minimum confidence threshold for detection
|
26 |
-
CONFIDENCE_THRESHOLD = 0.4 #
|
27 |
|
28 |
# Distance threshold to avoid duplicate counts
|
29 |
DISTANCE_THRESHOLD = 50
|
@@ -36,39 +30,38 @@ TIME_INTERVALS = {
|
|
36 |
|
37 |
def determine_time_interval(video_filename):
|
38 |
""" Determines frame skip interval based on keywords in the filename. """
|
39 |
-
logging.info(f"Checking filename: {video_filename}")
|
40 |
for keyword, interval in TIME_INTERVALS.items():
|
41 |
if keyword in video_filename:
|
42 |
-
logging.info(f"Matched keyword: {keyword} -> Interval: {interval}")
|
43 |
return interval
|
44 |
-
logging.info("No keyword match, using default interval: 5")
|
45 |
return 5 # Default interval
|
46 |
|
47 |
def count_unique_trucks(video_path):
|
48 |
""" Counts unique trucks in a video using YOLOv12x and SORT tracking. """
|
49 |
-
if not os.path.exists(video_path):
|
50 |
-
return {"Error": "Video file not found."}
|
51 |
-
|
52 |
cap = cv2.VideoCapture(video_path)
|
53 |
if not cap.isOpened():
|
54 |
return {"Error": "Unable to open video file."}
|
55 |
|
56 |
unique_truck_ids = set()
|
57 |
truck_history = {}
|
58 |
-
|
59 |
-
# Get FPS
|
60 |
-
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
61 |
-
|
62 |
-
|
63 |
-
# Extract filename and determine time interval
|
64 |
video_filename = os.path.basename(video_path).lower()
|
65 |
-
time_interval = determine_time_interval(video_filename)
|
66 |
|
67 |
-
#
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
frame_count = 0
|
70 |
|
71 |
-
while
|
72 |
ret, frame = cap.read()
|
73 |
if not ret:
|
74 |
break # End of video
|
@@ -83,29 +76,44 @@ def count_unique_trucks(video_path):
|
|
83 |
detections = []
|
84 |
for result in results:
|
85 |
for box in result.boxes:
|
86 |
-
class_id = int(box.cls.item())
|
87 |
-
confidence = float(box.conf.item())
|
88 |
|
|
|
89 |
if class_id == TRUCK_CLASS_ID and confidence > CONFIDENCE_THRESHOLD:
|
90 |
-
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
91 |
detections.append([x1, y1, x2, y2, confidence])
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
97 |
|
|
|
98 |
for obj in tracked_objects:
|
99 |
-
truck_id = int(obj[4])
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
unique_truck_ids.add(truck_id)
|
110 |
|
111 |
cap.release()
|
@@ -113,9 +121,6 @@ def count_unique_trucks(video_path):
|
|
113 |
|
114 |
# Gradio UI function
|
115 |
def analyze_video(video_file):
|
116 |
-
if not video_file:
|
117 |
-
return "Error: No video file uploaded."
|
118 |
-
|
119 |
result = count_unique_trucks(video_file)
|
120 |
return "\n".join([f"{key}: {value}" for key, value in result.items()])
|
121 |
|
|
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
import torch
|
|
|
5 |
from ultralytics import YOLO
|
6 |
from sort import Sort
|
7 |
import gradio as gr
|
8 |
|
|
|
|
|
|
|
9 |
# Load YOLOv12x model
|
10 |
MODEL_PATH = "yolov12x.pt"
|
|
|
|
|
11 |
model = YOLO(MODEL_PATH)
|
12 |
|
13 |
# COCO dataset class ID for truck
|
14 |
TRUCK_CLASS_ID = 7 # "truck"
|
15 |
|
16 |
# Initialize SORT tracker
|
17 |
+
tracker = Sort(max_age=20, min_hits=3, iou_threshold=0.3) # Improved tracking stability
|
18 |
|
19 |
# Minimum confidence threshold for detection
|
20 |
+
CONFIDENCE_THRESHOLD = 0.4 # Adjusted to capture more trucks
|
21 |
|
22 |
# Distance threshold to avoid duplicate counts
|
23 |
DISTANCE_THRESHOLD = 50
|
|
|
30 |
|
31 |
def determine_time_interval(video_filename):
|
32 |
""" Determines frame skip interval based on keywords in the filename. """
|
|
|
33 |
for keyword, interval in TIME_INTERVALS.items():
|
34 |
if keyword in video_filename:
|
|
|
35 |
return interval
|
|
|
36 |
return 5 # Default interval
|
37 |
|
38 |
def count_unique_trucks(video_path):
|
39 |
""" Counts unique trucks in a video using YOLOv12x and SORT tracking. """
|
|
|
|
|
|
|
40 |
cap = cv2.VideoCapture(video_path)
|
41 |
if not cap.isOpened():
|
42 |
return {"Error": "Unable to open video file."}
|
43 |
|
44 |
unique_truck_ids = set()
|
45 |
truck_history = {}
|
46 |
+
|
47 |
+
# Get FPS of the video
|
48 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
49 |
+
|
50 |
+
# Extract filename from the path and convert to lowercase
|
|
|
51 |
video_filename = os.path.basename(video_path).lower()
|
|
|
52 |
|
53 |
+
# Determine the dynamic time interval based on filename keywords
|
54 |
+
#time_interval = determine_time_interval(video_filename)
|
55 |
+
time_interval = 7
|
56 |
+
# Get total frames in the video
|
57 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
58 |
+
|
59 |
+
# Dynamically adjust frame skipping based on FPS and movement density
|
60 |
+
frame_skip = max(1, min(fps * time_interval // 2, total_frames // 10))
|
61 |
+
|
62 |
frame_count = 0
|
63 |
|
64 |
+
while True:
|
65 |
ret, frame = cap.read()
|
66 |
if not ret:
|
67 |
break # End of video
|
|
|
76 |
detections = []
|
77 |
for result in results:
|
78 |
for box in result.boxes:
|
79 |
+
class_id = int(box.cls.item()) # Get class ID
|
80 |
+
confidence = float(box.conf.item()) # Get confidence score
|
81 |
|
82 |
+
# Track only trucks
|
83 |
if class_id == TRUCK_CLASS_ID and confidence > CONFIDENCE_THRESHOLD:
|
84 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0]) # Get bounding box
|
85 |
detections.append([x1, y1, x2, y2, confidence])
|
86 |
|
87 |
+
# Convert detections to numpy array for SORT
|
88 |
+
detections = np.array(detections) if len(detections) > 0 else np.empty((0, 5))
|
89 |
+
|
90 |
+
# Update SORT tracker
|
91 |
+
tracked_objects = tracker.update(detections)
|
92 |
|
93 |
+
# Track movement history to avoid duplicate counts
|
94 |
for obj in tracked_objects:
|
95 |
+
truck_id = int(obj[4]) # Unique ID assigned by SORT
|
96 |
+
x1, y1, x2, y2 = obj[:4] # Get bounding box coordinates
|
97 |
+
|
98 |
+
truck_center = (x1 + x2) / 2, (y1 + y2) / 2 # Calculate truck center
|
99 |
+
|
100 |
+
# Entry-exit zone logic (e.g., bottom 20% of the frame)
|
101 |
+
frame_height, frame_width = frame.shape[:2]
|
102 |
+
entry_line = frame_height * 0.8 # Bottom 20% of the frame
|
103 |
+
exit_line = frame_height * 0.2 # Top 20% of the frame
|
104 |
+
|
105 |
+
if truck_id not in truck_history:
|
106 |
+
# New truck detected
|
107 |
+
truck_history[truck_id] = {
|
108 |
+
"position": truck_center,
|
109 |
+
"crossed_entry": truck_center[1] > entry_line,
|
110 |
+
"crossed_exit": False
|
111 |
+
}
|
112 |
+
continue
|
113 |
+
|
114 |
+
# If the truck crosses from entry to exit, count it
|
115 |
+
if truck_history[truck_id]["crossed_entry"] and truck_center[1] < exit_line:
|
116 |
+
truck_history[truck_id]["crossed_exit"] = True
|
117 |
unique_truck_ids.add(truck_id)
|
118 |
|
119 |
cap.release()
|
|
|
121 |
|
122 |
# Gradio UI function
|
123 |
def analyze_video(video_file):
|
|
|
|
|
|
|
124 |
result = count_unique_trucks(video_file)
|
125 |
return "\n".join([f"{key}: {value}" for key, value in result.items()])
|
126 |
|