Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,16 +8,17 @@ from ultralytics import YOLO
|
|
8 |
MODEL_PATH = "yolov12x.pt" # Ensure the model is uploaded to the Hugging Face Space
|
9 |
model = YOLO(MODEL_PATH)
|
10 |
|
11 |
-
# COCO dataset class
|
12 |
-
|
|
|
13 |
|
14 |
-
def
|
15 |
cap = cv2.VideoCapture(video_path)
|
16 |
if not cap.isOpened():
|
17 |
return "Error: Unable to open video file."
|
18 |
|
19 |
frame_count = 0
|
20 |
-
|
21 |
frame_skip = 5 # Process every 5th frame for efficiency
|
22 |
|
23 |
while True:
|
@@ -32,38 +33,42 @@ def count_trucks(video_path):
|
|
32 |
# Run YOLOv12x inference
|
33 |
results = model(frame, verbose=False)
|
34 |
|
35 |
-
truck_count = 0
|
36 |
for result in results:
|
37 |
for box in result.boxes:
|
38 |
class_id = int(box.cls.item()) # Get class ID
|
39 |
confidence = float(box.conf.item()) # Get confidence score
|
40 |
|
41 |
-
# Count
|
42 |
-
if class_id ==
|
|
|
|
|
43 |
truck_count += 1
|
44 |
|
45 |
-
|
|
|
46 |
|
47 |
cap.release()
|
48 |
|
49 |
return {
|
50 |
-
"
|
|
|
51 |
}
|
52 |
|
53 |
# Gradio UI function
|
54 |
def analyze_video(video_file):
|
55 |
-
result =
|
56 |
return "\n".join([f"{key}: {value}" for key, value in result.items()])
|
57 |
|
58 |
# Define Gradio interface
|
59 |
iface = gr.Interface(
|
60 |
fn=analyze_video,
|
61 |
inputs=gr.Video(label="Upload Video"),
|
62 |
-
outputs=gr.Textbox(label="
|
63 |
-
title="YOLOv12x
|
64 |
-
description="Upload a video to count trucks using YOLOv12x."
|
65 |
)
|
66 |
|
67 |
# Launch the Gradio app
|
68 |
if __name__ == "__main__":
|
69 |
-
iface.launch()
|
|
|
8 |
MODEL_PATH = "yolov12x.pt" # Ensure the model is uploaded to the Hugging Face Space
|
9 |
model = YOLO(MODEL_PATH)
|
10 |
|
11 |
+
# COCO dataset class IDs
|
12 |
+
PERSON_CLASS_ID = 0 # "person"
|
13 |
+
TRUCK_CLASS_ID = 7 # "truck"
|
14 |
|
15 |
+
def count_objects(video_path):
|
16 |
cap = cv2.VideoCapture(video_path)
|
17 |
if not cap.isOpened():
|
18 |
return "Error: Unable to open video file."
|
19 |
|
20 |
frame_count = 0
|
21 |
+
object_counts = {"people": [], "trucks": []}
|
22 |
frame_skip = 5 # Process every 5th frame for efficiency
|
23 |
|
24 |
while True:
|
|
|
33 |
# Run YOLOv12x inference
|
34 |
results = model(frame, verbose=False)
|
35 |
|
36 |
+
people_count, truck_count = 0, 0
|
37 |
for result in results:
|
38 |
for box in result.boxes:
|
39 |
class_id = int(box.cls.item()) # Get class ID
|
40 |
confidence = float(box.conf.item()) # Get confidence score
|
41 |
|
42 |
+
# Count objects based on their class IDs
|
43 |
+
if class_id == PERSON_CLASS_ID and confidence > 0.5:
|
44 |
+
people_count += 1
|
45 |
+
elif class_id == TRUCK_CLASS_ID and confidence > 0.5:
|
46 |
truck_count += 1
|
47 |
|
48 |
+
object_counts["people"].append(people_count)
|
49 |
+
object_counts["trucks"].append(truck_count)
|
50 |
|
51 |
cap.release()
|
52 |
|
53 |
return {
|
54 |
+
"Max People in a Frame": int(np.max(object_counts["people"])) if object_counts["people"] else 0,
|
55 |
+
"Max Trucks in a Frame": int(np.max(object_counts["trucks"])) if object_counts["trucks"] else 0
|
56 |
}
|
57 |
|
58 |
# Gradio UI function
|
59 |
def analyze_video(video_file):
|
60 |
+
result = count_objects(video_file)
|
61 |
return "\n".join([f"{key}: {value}" for key, value in result.items()])
|
62 |
|
63 |
# Define Gradio interface
|
64 |
iface = gr.Interface(
|
65 |
fn=analyze_video,
|
66 |
inputs=gr.Video(label="Upload Video"),
|
67 |
+
outputs=gr.Textbox(label="Analysis Result"),
|
68 |
+
title="YOLOv12x Object Counter",
|
69 |
+
description="Upload a video to count people and trucks using YOLOv12x."
|
70 |
)
|
71 |
|
72 |
# Launch the Gradio app
|
73 |
if __name__ == "__main__":
|
74 |
+
iface.launch()
|