hb-setosys's picture
Update app.py
f329a38 verified
raw
history blame
2.48 kB
import gradio as gr
import cv2
import numpy as np
from ultralytics import YOLO
from sort import Sort # SORT tracker
# Load YOLOv8 model (pre-trained on COCO dataset)
model = YOLO("yolov8x.pt") # Highest accuracy version
# Class label for trucks (COCO dataset)
TRUCK_CLASS_ID = 7 # "truck" in COCO dataset
# Initialize SORT tracker
tracker = Sort()
def count_trucks(video_path):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return "Error: Unable to open video file."
frame_count = 0
unique_truck_ids = set()
frame_skip = 5 # Process every 5th frame for efficiency
while True:
ret, frame = cap.read()
if not ret:
break # End of video
frame_count += 1
if frame_count % frame_skip != 0:
continue # Skip frames for efficiency
# Run YOLOv8 inference
results = model(frame, verbose=False)
detections = []
for result in results:
for box in result.boxes:
class_id = int(box.cls.item()) # Get class ID
confidence = float(box.conf.item()) # Get confidence score
x1, y1, x2, y2 = map(int, box.xyxy[0]) # Get bounding box
if class_id == TRUCK_CLASS_ID and confidence > 0.6:
detections.append([x1, y1, x2, y2, confidence]) # Append detection
# Convert to numpy array for SORT input
if len(detections) > 0:
detections = np.array(detections)
else:
detections = np.empty((0, 5)) # Empty array when no trucks detected
# Update tracker
tracked_objects = tracker.update(detections)
# Store unique truck IDs
for obj in tracked_objects:
truck_id = int(obj[4]) # SORT assigns unique IDs
unique_truck_ids.add(truck_id)
cap.release()
return {
"Total Unique Trucks in Video": len(unique_truck_ids)
}
# Gradio UI function
def analyze_video(video_file):
result = count_trucks(video_file)
return "\n".join([f"{key}: {value}" for key, value in result.items()])
# Gradio Interface
interface = gr.Interface(
fn=analyze_video,
inputs=gr.Video(label="Upload Video"),
outputs=gr.Textbox(label="Truck Counting Results"),
title="YOLOv8-based Truck Counter with Object Tracking",
description="Upload a video to detect and count unique trucks using YOLOv8 and SORT tracker."
)
# Launch app
interface.launch()