hb-setosys's picture
Update app.py
b0c01c9 verified
raw
history blame
3.03 kB
import gradio as gr
import cv2
import numpy as np
from deep_sort_realtime.deepsort_tracker import DeepSort
# Load YOLO model and configuration
net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
with open("coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
# Initialize DeepSORT tracker
tracker = DeepSort(max_age=30, n_init=3, nn_budget=20)
def count_unique_people(video_path):
# Open video
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return "Error: Unable to open video file."
unique_people = set() # To store unique IDs
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
height, width, _ = frame.shape
# Detect people using YOLO
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416), swapRB=True, crop=False)
net.setInput(blob)
output_layers_names = net.getUnconnectedOutLayersNames()
layer_outputs = net.forward(output_layers_names)
boxes = []
confidences = []
for output in layer_outputs:
for detection in output:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
# If detected class is 'person'
if classes[class_id] == "person" and confidence > 0.5:
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
# Apply non-maximum suppression
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
detections = []
if len(indexes) > 0:
for i in indexes.flatten():
x, y, w, h = boxes[i]
detections.append(([x, y, x + w, y + h], confidences[i]))
# Update tracker with detections
tracks = tracker.update_tracks(detections, frame=frame)
# Track unique IDs
for track in tracks:
if not track.is_confirmed():
continue
track_id = track.track_id
unique_people.add(track_id)
cap.release()
return {
"Total Unique People Detected": len(unique_people),
"Total Frames Processed": frame_count,
}
# Gradio Interface
description = """
Upload a video, and the app will count the total number of unique people detected in the video using YOLO and DeepSORT.
"""
interface = gr.Interface(
fn=count_unique_people,
inputs=gr.Video(label="Upload Video"),
outputs=gr.JSON(label="Unique People Count"),
title="Unique People Counter",
description=description,
)
if __name__ == "__main__":
interface.launch()