Update app.py
Browse files
app.py
CHANGED
@@ -1,108 +1,94 @@
|
|
1 |
-
# Install required libraries
|
2 |
-
#pip install gradio opencv-python-headless
|
3 |
-
|
4 |
-
# Download YOLO files
|
5 |
-
#wget -nc https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3.cfg
|
6 |
-
#wget -nc https://pjreddie.com/media/files/yolov3.weights
|
7 |
-
#wget -nc https://raw.githubusercontent.com/pjreddie/darknet/master/data/coco.names
|
8 |
-
|
9 |
import gradio as gr
|
10 |
import cv2
|
11 |
import numpy as np
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
21 |
# Open video
|
22 |
cap = cv2.VideoCapture(video_path)
|
|
|
|
|
23 |
|
|
|
24 |
frame_count = 0
|
25 |
-
|
26 |
-
people_per_frame = []
|
27 |
-
|
28 |
while cap.isOpened():
|
29 |
ret, frame = cap.read()
|
30 |
if not ret:
|
31 |
break
|
32 |
-
|
|
|
33 |
height, width, _ = frame.shape
|
34 |
-
|
35 |
-
#
|
36 |
-
blob = cv2.dnn.blobFromImage(frame, 1/255.0, (416, 416), swapRB=True, crop=False)
|
37 |
net.setInput(blob)
|
38 |
-
|
39 |
-
# Get output layer names
|
40 |
output_layers_names = net.getUnconnectedOutLayersNames()
|
41 |
-
|
42 |
-
# Forward pass
|
43 |
layer_outputs = net.forward(output_layers_names)
|
44 |
-
|
45 |
-
# Lists to store detected people
|
46 |
boxes = []
|
47 |
confidences = []
|
48 |
-
|
49 |
-
# Process detections
|
50 |
for output in layer_outputs:
|
51 |
for detection in output:
|
52 |
scores = detection[5:]
|
53 |
class_id = np.argmax(scores)
|
54 |
confidence = scores[class_id]
|
55 |
-
|
56 |
-
#
|
57 |
-
if classes[class_id] ==
|
58 |
-
# Object detected
|
59 |
center_x = int(detection[0] * width)
|
60 |
center_y = int(detection[1] * height)
|
61 |
w = int(detection[2] * width)
|
62 |
h = int(detection[3] * height)
|
63 |
-
|
64 |
-
|
65 |
-
x = int(center_x - w/2)
|
66 |
-
y = int(center_y - h/2)
|
67 |
-
|
68 |
boxes.append([x, y, w, h])
|
69 |
confidences.append(float(confidence))
|
70 |
-
|
71 |
# Apply non-maximum suppression
|
72 |
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
cap.release()
|
83 |
-
|
84 |
-
# Prepare analytics
|
85 |
return {
|
86 |
-
|
87 |
-
|
88 |
-
'Average People Per Frame': round(np.mean(people_per_frame), 2),
|
89 |
-
'Max People in a Single Frame': int(np.max(people_per_frame))
|
90 |
}
|
91 |
|
92 |
-
#
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
return result_str
|
97 |
-
|
98 |
-
# Gradio UI
|
99 |
interface = gr.Interface(
|
100 |
-
fn=
|
101 |
inputs=gr.Video(label="Upload Video"),
|
102 |
-
outputs=gr.
|
103 |
-
title="
|
104 |
-
description=
|
105 |
)
|
106 |
|
107 |
-
|
108 |
-
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
+
from deep_sort_realtime.deepsort_tracker import DeepSort
|
5 |
|
6 |
+
# Load YOLO model and configuration
|
7 |
+
net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
|
8 |
+
with open("coco.names", "r") as f:
|
9 |
+
classes = [line.strip() for line in f.readlines()]
|
10 |
+
|
11 |
+
# Initialize DeepSORT tracker
|
12 |
+
tracker = DeepSort(max_age=30, n_init=3, nn_budget=20)
|
13 |
+
|
14 |
+
def count_unique_people(video_path):
|
15 |
# Open video
|
16 |
cap = cv2.VideoCapture(video_path)
|
17 |
+
if not cap.isOpened():
|
18 |
+
return "Error: Unable to open video file."
|
19 |
|
20 |
+
unique_people = set() # To store unique IDs
|
21 |
frame_count = 0
|
22 |
+
|
|
|
|
|
23 |
while cap.isOpened():
|
24 |
ret, frame = cap.read()
|
25 |
if not ret:
|
26 |
break
|
27 |
+
|
28 |
+
frame_count += 1
|
29 |
height, width, _ = frame.shape
|
30 |
+
|
31 |
+
# Detect people using YOLO
|
32 |
+
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416), swapRB=True, crop=False)
|
33 |
net.setInput(blob)
|
|
|
|
|
34 |
output_layers_names = net.getUnconnectedOutLayersNames()
|
|
|
|
|
35 |
layer_outputs = net.forward(output_layers_names)
|
36 |
+
|
|
|
37 |
boxes = []
|
38 |
confidences = []
|
|
|
|
|
39 |
for output in layer_outputs:
|
40 |
for detection in output:
|
41 |
scores = detection[5:]
|
42 |
class_id = np.argmax(scores)
|
43 |
confidence = scores[class_id]
|
44 |
+
|
45 |
+
# If detected class is 'person'
|
46 |
+
if classes[class_id] == "person" and confidence > 0.5:
|
|
|
47 |
center_x = int(detection[0] * width)
|
48 |
center_y = int(detection[1] * height)
|
49 |
w = int(detection[2] * width)
|
50 |
h = int(detection[3] * height)
|
51 |
+
x = int(center_x - w / 2)
|
52 |
+
y = int(center_y - h / 2)
|
|
|
|
|
|
|
53 |
boxes.append([x, y, w, h])
|
54 |
confidences.append(float(confidence))
|
55 |
+
|
56 |
# Apply non-maximum suppression
|
57 |
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
58 |
+
detections = []
|
59 |
+
if len(indexes) > 0:
|
60 |
+
for i in indexes.flatten():
|
61 |
+
x, y, w, h = boxes[i]
|
62 |
+
detections.append(([x, y, x + w, y + h], confidences[i]))
|
63 |
+
|
64 |
+
# Update tracker with detections
|
65 |
+
tracks = tracker.update_tracks(detections, frame=frame)
|
66 |
+
|
67 |
+
# Track unique IDs
|
68 |
+
for track in tracks:
|
69 |
+
if not track.is_confirmed():
|
70 |
+
continue
|
71 |
+
track_id = track.track_id
|
72 |
+
unique_people.add(track_id)
|
73 |
+
|
74 |
cap.release()
|
75 |
+
|
|
|
76 |
return {
|
77 |
+
"Total Unique People Detected": len(unique_people),
|
78 |
+
"Total Frames Processed": frame_count,
|
|
|
|
|
79 |
}
|
80 |
|
81 |
+
# Gradio Interface
|
82 |
+
description = """
|
83 |
+
Upload a video, and the app will count the total number of unique people detected in the video using YOLO and DeepSORT.
|
84 |
+
"""
|
|
|
|
|
|
|
85 |
interface = gr.Interface(
|
86 |
+
fn=count_unique_people,
|
87 |
inputs=gr.Video(label="Upload Video"),
|
88 |
+
outputs=gr.JSON(label="Unique People Count"),
|
89 |
+
title="Unique People Counter",
|
90 |
+
description=description,
|
91 |
)
|
92 |
|
93 |
+
if __name__ == "__main__":
|
94 |
+
interface.launch(server_name="0.0.0.0", server_port=7860)
|