Update app.py
Browse files
app.py
CHANGED
@@ -1,101 +1,86 @@
|
|
1 |
-
# Install required libraries
|
2 |
-
#!pip install gradio opencv-python-headless
|
3 |
-
|
4 |
-
# Download YOLO files
|
5 |
-
#!wget -nc https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3.cfg
|
6 |
-
#!wget -nc https://pjreddie.com/media/files/yolov3.weights
|
7 |
-
#!wget -nc https://raw.githubusercontent.com/pjreddie/darknet/master/data/coco.names
|
8 |
-
|
9 |
import gradio as gr
|
10 |
import cv2
|
11 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def count_people(video_path):
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
# Load class names
|
18 |
-
with open('coco.names', 'r') as f:
|
19 |
-
classes = [line.strip() for line in f.readlines()]
|
20 |
-
|
21 |
-
# Open video
|
22 |
cap = cv2.VideoCapture(video_path)
|
23 |
-
|
|
|
|
|
24 |
frame_count = 0
|
25 |
-
total_people_count = 0
|
26 |
people_per_frame = []
|
27 |
-
|
28 |
-
while
|
29 |
ret, frame = cap.read()
|
30 |
if not ret:
|
31 |
break
|
32 |
-
|
33 |
height, width, _ = frame.shape
|
34 |
-
|
35 |
-
#
|
36 |
blob = cv2.dnn.blobFromImage(frame, 1/255.0, (416, 416), swapRB=True, crop=False)
|
37 |
net.setInput(blob)
|
38 |
-
|
39 |
-
# Get output layer names
|
40 |
-
output_layers_names = net.getUnconnectedOutLayersNames()
|
41 |
-
|
42 |
# Forward pass
|
43 |
layer_outputs = net.forward(output_layers_names)
|
44 |
-
|
45 |
-
# Lists to store detected people
|
46 |
-
boxes = []
|
47 |
-
confidences = []
|
48 |
-
|
49 |
# Process detections
|
|
|
50 |
for output in layer_outputs:
|
51 |
for detection in output:
|
52 |
scores = detection[5:]
|
53 |
class_id = np.argmax(scores)
|
54 |
confidence = scores[class_id]
|
55 |
-
|
56 |
-
# Check if detected object is a person
|
57 |
if classes[class_id] == 'person' and confidence > 0.5:
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
h = int(detection[3] * height)
|
63 |
-
|
64 |
-
# Rectangle coordinates
|
65 |
-
x = int(center_x - w/2)
|
66 |
-
y = int(center_y - h/2)
|
67 |
-
|
68 |
boxes.append([x, y, w, h])
|
69 |
confidences.append(float(confidence))
|
70 |
-
|
71 |
-
# Apply
|
72 |
-
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
73 |
-
|
74 |
# Count people in this frame
|
75 |
-
|
76 |
-
|
77 |
-
total_people_count += people_in_frame
|
78 |
-
|
79 |
frame_count += 1
|
80 |
-
|
81 |
-
# Release resources
|
82 |
cap.release()
|
83 |
-
|
84 |
-
#
|
85 |
return {
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
'People in a Video': int(np.max(people_per_frame)) #Max People in a Single Frame
|
90 |
}
|
91 |
|
92 |
-
#
|
93 |
def analyze_video(video_file):
|
94 |
result = count_people(video_file)
|
95 |
-
|
96 |
-
return result_str
|
97 |
|
98 |
-
# Gradio
|
99 |
interface = gr.Interface(
|
100 |
fn=analyze_video,
|
101 |
inputs=gr.Video(label="Upload Video"),
|
@@ -104,5 +89,5 @@ interface = gr.Interface(
|
|
104 |
description="Upload a video to detect and count people using YOLOv3."
|
105 |
)
|
106 |
|
107 |
-
# Launch
|
108 |
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
+
import os
|
5 |
+
|
6 |
+
# Load YOLO model
|
7 |
+
net = cv2.dnn.readNet('yolov3.weights', 'yolov3.cfg')
|
8 |
+
|
9 |
+
# Enable GPU (if available)
|
10 |
+
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
|
11 |
+
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
|
12 |
+
|
13 |
+
# Load class names
|
14 |
+
with open('coco.names', 'r') as f:
|
15 |
+
classes = [line.strip() for line in f.readlines()]
|
16 |
+
|
17 |
+
# Get YOLO output layer names
|
18 |
+
output_layers_names = net.getUnconnectedOutLayersNames()
|
19 |
|
20 |
def count_people(video_path):
|
21 |
+
if not os.path.exists(video_path):
|
22 |
+
return "Error: Video file not found."
|
23 |
+
|
|
|
|
|
|
|
|
|
|
|
24 |
cap = cv2.VideoCapture(video_path)
|
25 |
+
if not cap.isOpened():
|
26 |
+
return "Error: Unable to open video file."
|
27 |
+
|
28 |
frame_count = 0
|
|
|
29 |
people_per_frame = []
|
30 |
+
|
31 |
+
while True:
|
32 |
ret, frame = cap.read()
|
33 |
if not ret:
|
34 |
break
|
35 |
+
|
36 |
height, width, _ = frame.shape
|
37 |
+
|
38 |
+
# Convert frame to YOLO format
|
39 |
blob = cv2.dnn.blobFromImage(frame, 1/255.0, (416, 416), swapRB=True, crop=False)
|
40 |
net.setInput(blob)
|
41 |
+
|
|
|
|
|
|
|
42 |
# Forward pass
|
43 |
layer_outputs = net.forward(output_layers_names)
|
44 |
+
|
|
|
|
|
|
|
|
|
45 |
# Process detections
|
46 |
+
boxes, confidences = [], []
|
47 |
for output in layer_outputs:
|
48 |
for detection in output:
|
49 |
scores = detection[5:]
|
50 |
class_id = np.argmax(scores)
|
51 |
confidence = scores[class_id]
|
52 |
+
|
|
|
53 |
if classes[class_id] == 'person' and confidence > 0.5:
|
54 |
+
center_x, center_y = int(detection[0] * width), int(detection[1] * height)
|
55 |
+
w, h = int(detection[2] * width), int(detection[3] * height)
|
56 |
+
x, y = int(center_x - w / 2), int(center_y - h / 2)
|
57 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
boxes.append([x, y, w, h])
|
59 |
confidences.append(float(confidence))
|
60 |
+
|
61 |
+
# Apply Non-Maximum Suppression (NMS)
|
62 |
+
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4) if boxes else []
|
63 |
+
|
64 |
# Count people in this frame
|
65 |
+
people_per_frame.append(len(indexes))
|
66 |
+
|
|
|
|
|
67 |
frame_count += 1
|
68 |
+
|
|
|
69 |
cap.release()
|
70 |
+
|
71 |
+
# Generate analytics
|
72 |
return {
|
73 |
+
"Total Frames Processed": frame_count,
|
74 |
+
"Max People in a Single Frame": int(np.max(people_per_frame)) if people_per_frame else 0,
|
75 |
+
"Avg People Per Frame": round(np.mean(people_per_frame), 2) if people_per_frame else 0
|
|
|
76 |
}
|
77 |
|
78 |
+
# Gradio UI function
|
79 |
def analyze_video(video_file):
|
80 |
result = count_people(video_file)
|
81 |
+
return "\n".join([f"{key}: {value}" for key, value in result.items()])
|
|
|
82 |
|
83 |
+
# Gradio Interface
|
84 |
interface = gr.Interface(
|
85 |
fn=analyze_video,
|
86 |
inputs=gr.Video(label="Upload Video"),
|
|
|
89 |
description="Upload a video to detect and count people using YOLOv3."
|
90 |
)
|
91 |
|
92 |
+
# Launch app
|
93 |
interface.launch()
|