# Install required libraries #pip install gradio opencv-python-headless # Download YOLO files #wget -nc https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3.cfg #wget -nc https://pjreddie.com/media/files/yolov3.weights #wget -nc https://raw.githubusercontent.com/pjreddie/darknet/master/data/coco.names import gradio as gr import cv2 import numpy as np def count_people(video_path): # Load YOLO model net = cv2.dnn.readNet('yolov3.weights', 'yolov3.cfg') # Load class names with open('coco.names', 'r') as f: classes = [line.strip() for line in f.readlines()] # Open video cap = cv2.VideoCapture(video_path) frame_count = 0 total_people_count = 0 people_per_frame = [] while cap.isOpened(): ret, frame = cap.read() if not ret: break height, width, _ = frame.shape # Create blob from frame blob = cv2.dnn.blobFromImage(frame, 1/255.0, (416, 416), swapRB=True, crop=False) net.setInput(blob) # Get output layer names output_layers_names = net.getUnconnectedOutLayersNames() # Forward pass layer_outputs = net.forward(output_layers_names) # Lists to store detected people boxes = [] confidences = [] # Process detections for output in layer_outputs: for detection in output: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] # Check if detected object is a person if classes[class_id] == 'person' and confidence > 0.5: # Object detected center_x = int(detection[0] * width) center_y = int(detection[1] * height) w = int(detection[2] * width) h = int(detection[3] * height) # Rectangle coordinates x = int(center_x - w/2) y = int(center_y - h/2) boxes.append([x, y, w, h]) confidences.append(float(confidence)) # Apply non-maximum suppression indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4) # Count people in this frame people_in_frame = len(indexes) people_per_frame.append(people_in_frame) total_people_count += people_in_frame frame_count += 1 # Release resources cap.release() # Prepare analytics return { 'Total Frames Processed': frame_count, 'Total People Detected': total_people_count, 'Average People Per Frame': round(np.mean(people_per_frame), 2), 'Max People in a Single Frame': int(np.max(people_per_frame)) } # Define Gradio interface def analyze_video(video_file): result = count_people(video_file) result_str = "\n".join([f"{key}: {value}" for key, value in result.items()]) return result_str # Gradio UI interface = gr.Interface( fn=analyze_video, inputs=gr.Video(label="Upload Video"), outputs=gr.Textbox(label="People Counting Results"), title="YOLO-based People Counter", description="Upload a video to detect and count people using YOLOv3." ) # Launch Gradio app interface.launch()