import gradio as gr import cv2 import numpy as np import torch from ultralytics import YOLO # Load YOLOv12x model (pre-trained on COCO dataset) model = YOLO("yolov8x.pt") # Update to YOLOv12x # Class label for trucks (COCO dataset) TRUCK_CLASS_ID = 7 # "truck" in COCO dataset def count_trucks(video_path): cap = cv2.VideoCapture(video_path) if not cap.isOpened(): return "Error: Unable to open video file." frame_count = 0 truck_count_per_frame = [] frame_skip = 5 # Process every 5th frame for efficiency while True: ret, frame = cap.read() if not ret: break # End of video frame_count += 1 if frame_count % frame_skip != 0: continue # Skip frames to improve efficiency # Run YOLOv12x inference results = model(frame, verbose=False) truck_count = 0 for result in results: for box in result.boxes: class_id = int(box.cls.item()) # Get class ID confidence = float(box.conf.item()) # Get confidence score if class_id == TRUCK_CLASS_ID and confidence > 0.6: truck_count += 1 # Count trucks with confidence > 0.6 truck_count_per_frame.append(truck_count) cap.release() return { "Total Trucks in Video": int(np.max(truck_count_per_frame)) if truck_count_per_frame else 0 } # Gradio UI function def analyze_video(video_file): result = count_trucks(video_file) return "\n".join([f"{key}: {value}" for key, value in result.items()]) # Gradio Interface interface = gr.Interface( fn=analyze_video, inputs=gr.Video(label="Upload Video"), outputs=gr.Textbox(label="Truck Counting Results"), title="YOLOv12x-based Truck Counter", description="Upload a video to detect and count trucks using YOLOv12x." ) # Launch app interface.launch()