denis_cnn_model / app.py
hb-setosys's picture
Update app.py
044b146 verified
raw
history blame
1.48 kB
import gradio as gr # Ensure you import gradio correctly
import tensorflow as tf
import numpy as np
# Load the Keras model
model = tf.keras.models.load_model("denis_mnist_cnn_model.h5")
# Define a function to preprocess input and make predictions
def predict(image):
# Convert image to a numpy array
image = np.array(image)
# Resize the image to the expected shape (28, 28, 3) for RGB images
image = tf.image.resize(image, (28, 28)) # Resize to 28x28 pixels
# Check if the image is grayscale (single channel), and convert to RGB if necessary
if image.shape[-1] == 1: # If it's grayscale (single channel)
image = np.repeat(image, 3, axis=-1) # Convert grayscale to RGB by repeating the channel
# Normalize the image
image = image / 255.0
# Add batch dimension
image = np.expand_dims(image, axis=0) # Add batch dimension to match the model's expected input shape (1, 28, 28, 3)
# Perform prediction
prediction = model.predict(image)
# Get the predicted class (index of the highest probability)
predicted_class = np.argmax(prediction)
# Return prediction as JSON (with the predicted class label)
return {"prediction": int(predicted_class)}
# Create a Gradio interface
interface = gr.Interface(
fn=predict,
inputs="image", # Image input for testing
outputs="json" # JSON output for prediction results
)
# Launch the interface
interface.launch(share=True)