denis_cnn_model / app.py
hb-setosys's picture
Update app.py
3a813cf verified
raw
history blame
1.27 kB
import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image
# Load the model (ensure you have the correct model path)
model = tf.keras.models.load_model("denis_mnist_cnn_model.h5")
# Define a function to preprocess input and make predictions
def predict(image):
# Convert image to a numpy array
image = np.array(image)
# Resize the image to the expected shape (28, 28, 3)
image = tf.image.resize(image, (28, 28)) # Resize to 28x28 pixels
image = np.expand_dims(image, axis=-1) # Add the channel dimension if grayscale
image = np.repeat(image, 3, axis=-1) # Convert grayscale to RGB (if model was trained on RGB images)
# Normalize the image
image = image / 255.0
# Add batch dimension
image = np.expand_dims(image, axis=0) # Add batch dimension to match the model's expected input shape (1, 28, 28, 3)
# Perform prediction
prediction = model.predict(image)
# Return prediction as JSON
return {"prediction": prediction.tolist()}
# Create a Gradio interface
interface = gr.Interface(
fn=predict,
inputs="image", # Image input for testing
outputs="json" # JSON output for prediction results
)
# Launch the interface
interface.launch(share=True)