Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# Load the Keras model
|
6 |
+
model = tf.keras.models.load_model("denis_mnist_cnn_model.h5")
|
7 |
+
|
8 |
+
# Define a function to preprocess input and make predictions
|
9 |
+
def predict(image):
|
10 |
+
# Preprocess the image (resize, normalize, etc.)
|
11 |
+
image = tf.image.resize(image, (224, 224)) # Example: Resize to 224x224
|
12 |
+
image = np.expand_dims(image, axis=0) # Add batch dimension
|
13 |
+
image = image / 255.0 # Normalize pixel values
|
14 |
+
|
15 |
+
# Perform prediction
|
16 |
+
prediction = model.predict(image)
|
17 |
+
return {"prediction": prediction.tolist()}
|
18 |
+
|
19 |
+
|
20 |
+
# Create a Gradio interface
|
21 |
+
interface = gr.Interface(
|
22 |
+
fn=predict,
|
23 |
+
inputs="image", # Text input for comma-separated values
|
24 |
+
outputs="json" # JSON output for prediction results
|
25 |
+
)
|
26 |
+
|
27 |
+
# Launch the Gradio app
|
28 |
+
if __name__ == "__main__":
|
29 |
+
interface.launch()
|