Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,13 +9,21 @@ model = tf.keras.models.load_model("denis_mnist_cnn_model.h5")
|
|
9 |
def preprocess_image(image):
|
10 |
# Resize the image to 28x28 as expected by the model
|
11 |
image = tf.image.resize(image, (28, 28)) # Resize to 28x28
|
|
|
12 |
|
13 |
-
# Convert image to
|
|
|
|
|
|
|
|
|
|
|
14 |
image = tf.cast(image, tf.float32) / 255.0
|
15 |
|
16 |
# Add batch dimension (model expects batch of images)
|
17 |
image = tf.expand_dims(image, axis=0)
|
|
|
18 |
print(f"Image shape after adding batch dimension: {image.shape}")
|
|
|
19 |
return image
|
20 |
|
21 |
# Function to make predictions
|
|
|
9 |
def preprocess_image(image):
|
10 |
# Resize the image to 28x28 as expected by the model
|
11 |
image = tf.image.resize(image, (28, 28)) # Resize to 28x28
|
12 |
+
print(f"Image shape after resizing: {image.shape}")
|
13 |
|
14 |
+
# Convert the image to grayscale (1 channel)
|
15 |
+
image = tf.image.rgb_to_grayscale(image) # Convert RGB to grayscale
|
16 |
+
|
17 |
+
print(f"Image shape after converting to grayscale: {image.shape}")
|
18 |
+
|
19 |
+
# Normalize pixel values to [0, 1]
|
20 |
image = tf.cast(image, tf.float32) / 255.0
|
21 |
|
22 |
# Add batch dimension (model expects batch of images)
|
23 |
image = tf.expand_dims(image, axis=0)
|
24 |
+
|
25 |
print(f"Image shape after adding batch dimension: {image.shape}")
|
26 |
+
|
27 |
return image
|
28 |
|
29 |
# Function to make predictions
|