Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,18 @@
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
-
from PIL import Image
|
5 |
|
6 |
# Load the trained model
|
7 |
model = tf.keras.models.load_model("denis_mnist_cnn_model.h5")
|
8 |
|
9 |
# Preprocessing function for images
|
10 |
def preprocess_image(image):
|
11 |
-
# Convert PIL image to a tensor
|
12 |
-
image = tf.convert_to_tensor(image)
|
13 |
-
|
14 |
# Resize the image to 28x28 as expected by the model
|
15 |
image = tf.image.resize(image, (28, 28)) # Resize to 28x28
|
16 |
-
|
17 |
-
# If the image is RGB, convert it to grayscale
|
18 |
-
if image.shape[-1] == 3:
|
19 |
-
image = tf.image.rgb_to_grayscale(image) # Convert RGB to grayscale
|
20 |
|
21 |
-
#
|
22 |
-
image = image / 255.0
|
23 |
|
24 |
-
# Convert grayscale to RGB (3 channels)
|
25 |
-
image = tf.image.grayscale_to_rgb(image) # Convert grayscale to RGB (3 channels)
|
26 |
-
|
27 |
# Add batch dimension (model expects batch of images)
|
28 |
image = tf.expand_dims(image, axis=0)
|
29 |
|
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
|
|
4 |
|
5 |
# Load the trained model
|
6 |
model = tf.keras.models.load_model("denis_mnist_cnn_model.h5")
|
7 |
|
8 |
# Preprocessing function for images
|
9 |
def preprocess_image(image):
|
|
|
|
|
|
|
10 |
# Resize the image to 28x28 as expected by the model
|
11 |
image = tf.image.resize(image, (28, 28)) # Resize to 28x28
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
# Convert image to float32 and normalize pixel values to [0, 1]
|
14 |
+
image = tf.cast(image, tf.float32) / 255.0
|
15 |
|
|
|
|
|
|
|
16 |
# Add batch dimension (model expects batch of images)
|
17 |
image = tf.expand_dims(image, axis=0)
|
18 |
|