hbsanaweb commited on
Commit
7bf2580
·
verified ·
1 Parent(s): 57df9d2

Create cod-app.text

Browse files
Files changed (1) hide show
  1. cod-app.text +160 -0
cod-app.text ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from langchain.document_loaders import PyPDFLoader
3
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
4
+ from langchain.embeddings import HuggingFaceEmbeddings # Updated for Persian embeddings
5
+ from langchain.vectorstores import FAISS
6
+ from langchain.memory import ConversationBufferMemory
7
+ from groq import Groq
8
+ import requests
9
+ from bs4 import BeautifulSoup
10
+ from serpapi import GoogleSearch
11
+ import logging
12
+
13
+ logging.basicConfig(level=logging.INFO)
14
+ logger = logging.getLogger(__name__)
15
+
16
+ client = Groq(api_key="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")
17
+
18
+ embedding_model = HuggingFaceEmbeddings(model_name="HooshvareLab/bert-fa-base-uncased")
19
+
20
+ memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
21
+
22
+ def process_pdf_with_langchain(pdf_path):
23
+ try:
24
+ loader = PyPDFLoader(pdf_path)
25
+ documents = loader.load()
26
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
27
+ split_documents = text_splitter.split_documents(documents)
28
+
29
+ vectorstore = FAISS.from_documents(split_documents, embedding_model)
30
+ retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
31
+ return retriever
32
+ except Exception as e:
33
+ logger.error(f"Error processing PDF: {e}")
34
+ raise
35
+
36
+ SERPAPI_KEY = "8a20e83850a3be0a0b4e3aed98bd3addbad56e82d52e639e1a692a02d021bca1"
37
+
38
+ def scrape_google_search(query, num_results=3):
39
+ try:
40
+ params = {
41
+ "q": query,
42
+ "hl": "fa",
43
+ "gl": "ir",
44
+ "num": num_results,
45
+ "api_key": SERPAPI_KEY,
46
+ }
47
+ search = GoogleSearch(params)
48
+ results = search.get_dict()
49
+
50
+ if "error" in results:
51
+ return f"Error: {results['error']}"
52
+
53
+ search_results = []
54
+ for result in results.get("organic_results", []):
55
+ title = result.get("title", "No Title")
56
+ link = result.get("link", "No Link")
57
+ search_results.append(f"{title}: {link}")
58
+ return "\n".join(search_results) if search_results else "No results found"
59
+ except Exception as e:
60
+ logger.error(f"Error scraping Google search: {e}")
61
+ return f"Error: {e}"
62
+
63
+ def scrape_webpage(url):
64
+ try:
65
+ headers = {
66
+ "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
67
+ }
68
+ response = requests.get(url, headers=headers)
69
+ response.raise_for_status()
70
+
71
+ soup = BeautifulSoup(response.content, "html.parser")
72
+ text = soup.get_text(separator="\n")
73
+ return text.strip()
74
+ except Exception as e:
75
+ logger.error(f"Error scraping webpage {url}: {e}")
76
+ return f"Error: {e}"
77
+
78
+ def generate_response(query, retriever=None, use_web_search=False, scrape_web=False):
79
+ try:
80
+ knowledge = ""
81
+
82
+ if retriever:
83
+ relevant_docs = retriever.get_relevant_documents(query)
84
+ knowledge += "\n".join([doc.page_content for doc in relevant_docs])
85
+
86
+ if use_web_search:
87
+ web_results = scrape_google_search(query)
88
+ knowledge += f"\n\nWeb Search Results:\n{web_results}"
89
+
90
+ if scrape_web:
91
+ urls = [word for word in query.split() if word.startswith("http://") or word.startswith("https://")]
92
+ for url in urls:
93
+ webpage_content = scrape_webpage(url)
94
+ knowledge += f"\n\nWebpage Content from {url}:\n{webpage_content}"
95
+
96
+ chat_history = memory.load_memory_variables({}).get("chat_history", "")
97
+ context = (
98
+ f"This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz from Kermanshah University of Technology (KUT), "
99
+ f"to help with tasks like answering questions in Persian, providing recommendations, and decision-making."
100
+ )
101
+ if knowledge:
102
+ context += f"\n\nRelevant Knowledge:\n{knowledge}"
103
+ if chat_history:
104
+ context += f"\n\nChat History:\n{chat_history}"
105
+
106
+ context += f"\n\nYou: {query}\nParvizGPT:"
107
+
108
+ chat_completion = client.chat.completions.create(
109
+ messages=[{"role": "user", "content": context}],
110
+ model= "gemma2-9b-it" #"llama-3.3-70b-versatile",
111
+ )
112
+ response = chat_completion.choices[0].message.content.strip()
113
+
114
+ memory.save_context({"input": query}, {"output": response})
115
+ return response
116
+ except Exception as e:
117
+ logger.error(f"Error generating response: {e}")
118
+ return f"Error: {e}"
119
+
120
+ def gradio_interface(user_message, chat_box, pdf_file=None, enable_web_search=False, scrape_web=False):
121
+ global retriever
122
+ if pdf_file is not None:
123
+ try:
124
+ retriever = process_pdf_with_langchain(pdf_file.name)
125
+ except Exception as e:
126
+ return chat_box + [("Error", f"Error processing PDF: {e}")]
127
+
128
+ response = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search, scrape_web=scrape_web)
129
+ chat_box.append(("You", user_message))
130
+ chat_box.append(("ParvizGPT", response))
131
+ return chat_box
132
+
133
+ def clear_memory():
134
+ memory.clear()
135
+ return []
136
+
137
+ retriever = None
138
+
139
+ with gr.Blocks() as interface:
140
+ gr.Markdown("## ParvizGPT")
141
+ chat_box = gr.Chatbot(label="Chat History", value=[])
142
+
143
+ user_message = gr.Textbox(
144
+ label="Your Message",
145
+ placeholder="Type your message here and press Enter...",
146
+ lines=1,
147
+ interactive=True,
148
+ )
149
+ enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False)
150
+ scrape_web = gr.Checkbox(label="🌍Scrape Webpages", value=False)
151
+
152
+ clear_memory_btn = gr.Button("Clear Memory", interactive=True)
153
+ pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True , scale=1)
154
+
155
+ submit_btn = gr.Button("Submit")
156
+ submit_btn.click(gradio_interface, inputs=[user_message, chat_box, pdf_file, enable_web_search, scrape_web], outputs=chat_box)
157
+ user_message.submit(gradio_interface, inputs=[user_message, chat_box, pdf_file, enable_web_search, scrape_web], outputs=chat_box)
158
+ clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)
159
+
160
+ interface.launch()