heaversm's picture
add description
91b8fbc
raw
history blame
2.88 kB
import streamlit as st
import os
from dotenv import load_dotenv
from langchain.document_loaders import GithubFileLoader
# from langchain.embeddings import HuggingFaceEmbeddings
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import CharacterTextSplitter
load_dotenv()
#get the GITHUB_ACCESS_TOKEN from the .env file
GITHUB_ACCESS_TOKEN = os.getenv("GITHUB_ACCESS_TOKEN")
GITHUB_BASE_URL = "https://github.com/"
@st.cache_resource
def get_hugging_face_model():
model_name = "mchochlov/codebert-base-cd-ft"
hf = HuggingFaceEmbeddings(model_name=model_name)
return hf
def get_similar_files(query, db, embeddings):
docs_and_scores = db.similarity_search_with_score(query)
return docs_and_scores
# STREAMLIT INTERFACE
st.title("Find Similar Code")
st.markdown("This app takes a code sample you provide, and finds similar code in a Github repository.")
st.markdown("This functionality could ideally be implemented across multiple repos to allow you to find helpful examples of how to implement the code you are working on writing, or identify other code contributors who could help you resolve your issues")
USER = st.text_input("Enter the Github User", value = "heaversm")
REPO = st.text_input("Enter the Github Repository", value = "gdrive-docker")
FILE_TYPES_TO_LOAD = st.multiselect("Select File Types", [".py", ".ts",".js",".css",".html"], default = [".py"])
text_input = st.text_area("Enter a Code Example", value =
"""
def create_app():
app = connexion.FlaskApp(__name__, specification_dir="../.openapi")
app.add_api(
API_VERSION, resolver=connexion.resolver.RelativeResolver("provider.app")
)
""", height = 330
)
button = st.button("Find Similar Code")
if button:
loader = GithubFileLoader(
repo=f"{USER}/{REPO}",
access_token=GITHUB_ACCESS_TOKEN,
github_api_url="https://api.github.com",
file_filter=lambda file_path: file_path.endswith(
tuple(FILE_TYPES_TO_LOAD)
)
)
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embedding_vector = get_hugging_face_model()
db = FAISS.from_documents(docs, embedding_vector)
query = text_input
results_with_scores = get_similar_files(query, db, embedding_vector)
for doc, score in results_with_scores:
print(f"Path: {doc.metadata['path']}, Score: {score}")
top_file_path = results_with_scores[0][0].metadata['path']
top_file_content = results_with_scores[0][0].page_content
top_file_score = results_with_scores[0][1]
top_file_link = f"{GITHUB_BASE_URL}{USER}/{REPO}/blob/main/{top_file_path}"
# write a clickable link in streamlit
st.markdown(f"[Top file link]({top_file_link})")
else:
st.info("Please Submit a Code Sample to Find Similar Code")