Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 4,838 Bytes
df66f6e 2a5f9fb abd0954 2a5f9fb df66f6e 314f91a 2a5f9fb df66f6e 2a5f9fb 976f398 2a5f9fb abd0954 2a5f9fb abd0954 976f398 9d22eee 976f398 2a5f9fb 314f91a 2a5f9fb 55cc480 2a5f9fb 2440506 2a5f9fb abd0954 4d02e0f b293d29 4d02e0f 2a5f9fb 4d02e0f 2a5f9fb c15e77e abd0954 2a5f9fb abd0954 976f398 93a260a 976f398 2a5f9fb 9833cdb 2a5f9fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import json
import os
from datetime import datetime, timezone
import gradio as gr
from huggingface_hub import HfApi
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
from src.submission.check_validity import (
already_submitted_models,
check_model_card,
get_model_size,
is_model_on_hub,
)
REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None
def add_new_eval(
model: str,
base_model: str,
revision: str,
precision: str,
weight_type: str,
model_type: str,
oauth_token: gr.OAuthToken
):
if not oauth_token:
return styled_error("Please login in order to submit models")
global REQUESTED_MODELS
global USERS_TO_SUBMISSION_DATES
if not REQUESTED_MODELS:
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
precision = precision.split(" ")[0]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
if model_type is None or model_type == "":
return styled_error("Please select a model type.")
# Does the model actually exist?
if revision == "":
revision = "main"
# Is the model on the hub?
if weight_type in ["Delta", "Adapter"]:
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
if not base_model_on_hub:
return styled_error(f'Base model "{base_model}" {error}')
if not weight_type == "Adapter":
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
if not model_on_hub:
return styled_error(f'Model "{model}" {error}')
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=model, revision=revision)
except Exception:
return styled_error("Could not get your model information. Please fill it up properly.")
model_size = get_model_size(model_info=model_info, precision=precision)
# Were the model card and license filled?
try:
license = model_info.cardData["license"]
except Exception:
return styled_error("Please select a license for your model")
modelcard_OK, error_msg = check_model_card(model)
if not modelcard_OK:
return styled_error(error_msg)
print('Getting user info...')
api = HfApi(token=oauth_token.token)
user_info = api.whoami()
actual_revision = revision
if revision == 'main':
model_info = API.model_info(model)
actual_revision = model_info.sha
# Seems good, creating the eval
print("Adding new eval")
eval_entry = {
"model": model,
"base_model": base_model,
"revision": actual_revision,
"precision": precision,
"weight_type": weight_type,
"status": "PENDING",
"submitted_time": current_time,
"model_type": model_type,
"likes": model_info.likes,
"params": model_size,
"license": license,
"private": False,
"user_info": user_info
}
# Check for duplicate submission
request_keys = [f"{model}_{revision}_{precision}", f"{model}_{actual_revision}_{precision}"]
requested_status = next((REQUESTED_MODELS[key] for key in request_keys if key in REQUESTED_MODELS), 'NONE')
# If it's None or Rejected - let it through. Otherwise - inform the user
if requested_status not in ['NONE', 'REJECTED']:
# if it failed - spell that out and tell him to contact if we wants to resubmit
if requested_status == 'FAILED':
return styled_warning("This model has been already submitted and failed to run - please open a discussion or contact the support email.")
return styled_warning("This model has been already submitted.")
print("Creating eval file")
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
print("Uploading eval file")
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model} to eval queue",
)
# Remove the local file
os.remove(out_path)
return styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
)
|