Spaces:
Runtime error
Runtime error
Commit
·
75d0ed2
0
Parent(s):
Duplicate from cyllum/soccertwos-analytics
Browse filesCo-authored-by: Cyllum AI <[email protected]>
- .gitignore +134 -0
- .streamlit/config.toml +9 -0
- Dockerfile +21 -0
- README.md +14 -0
- app.py +206 -0
- requirements.txt +5 -0
.gitignore
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
venv/
|
2 |
+
# Byte-compiled / optimized / DLL files
|
3 |
+
__pycache__/
|
4 |
+
*.py[cod]
|
5 |
+
*$py.class
|
6 |
+
|
7 |
+
# C extensions
|
8 |
+
*.so
|
9 |
+
|
10 |
+
# Distribution / packaging
|
11 |
+
.Python
|
12 |
+
build/
|
13 |
+
develop-eggs/
|
14 |
+
dist/
|
15 |
+
downloads/
|
16 |
+
eggs/
|
17 |
+
.eggs/
|
18 |
+
lib/
|
19 |
+
lib64/
|
20 |
+
parts/
|
21 |
+
sdist/
|
22 |
+
var/
|
23 |
+
wheels/
|
24 |
+
pip-wheel-metadata/
|
25 |
+
share/python-wheels/
|
26 |
+
*.egg-info/
|
27 |
+
.installed.cfg
|
28 |
+
*.egg
|
29 |
+
MANIFEST
|
30 |
+
|
31 |
+
# PyInstaller
|
32 |
+
# Usually these files are written by a python script from a template
|
33 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
34 |
+
*.manifest
|
35 |
+
*.spec
|
36 |
+
|
37 |
+
# Installer logs
|
38 |
+
pip-log.txt
|
39 |
+
pip-delete-this-directory.txt
|
40 |
+
|
41 |
+
# Unit test / coverage reports
|
42 |
+
htmlcov/
|
43 |
+
.tox/
|
44 |
+
.nox/
|
45 |
+
.coverage
|
46 |
+
.coverage.*
|
47 |
+
.cache
|
48 |
+
nosetests.xml
|
49 |
+
coverage.xml
|
50 |
+
*.cover
|
51 |
+
*.py,cover
|
52 |
+
.hypothesis/
|
53 |
+
.pytest_cache/
|
54 |
+
|
55 |
+
# Translations
|
56 |
+
*.mo
|
57 |
+
*.pot
|
58 |
+
|
59 |
+
# Django stuff:
|
60 |
+
*.log
|
61 |
+
local_settings.py
|
62 |
+
db.sqlite3
|
63 |
+
db.sqlite3-journal
|
64 |
+
|
65 |
+
# Flask stuff:
|
66 |
+
instance/
|
67 |
+
.webassets-cache
|
68 |
+
|
69 |
+
# Scrapy stuff:
|
70 |
+
.scrapy
|
71 |
+
|
72 |
+
# Sphinx documentation
|
73 |
+
docs/_build/
|
74 |
+
|
75 |
+
# PyBuilder
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
.python-version
|
87 |
+
|
88 |
+
# pipenv
|
89 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
90 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
91 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
92 |
+
# install all needed dependencies.
|
93 |
+
#Pipfile.lock
|
94 |
+
|
95 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
96 |
+
__pypackages__/
|
97 |
+
|
98 |
+
# Celery stuff
|
99 |
+
celerybeat-schedule
|
100 |
+
celerybeat.pid
|
101 |
+
|
102 |
+
# SageMath parsed files
|
103 |
+
*.sage.py
|
104 |
+
|
105 |
+
# Environments
|
106 |
+
.env
|
107 |
+
.venv
|
108 |
+
env/
|
109 |
+
venv/
|
110 |
+
ENV/
|
111 |
+
env.bak/
|
112 |
+
venv.bak/
|
113 |
+
|
114 |
+
# Spyder project settings
|
115 |
+
.spyderproject
|
116 |
+
.spyproject
|
117 |
+
|
118 |
+
# Rope project settings
|
119 |
+
.ropeproject
|
120 |
+
|
121 |
+
# mkdocs documentation
|
122 |
+
/site
|
123 |
+
|
124 |
+
# mypy
|
125 |
+
.mypy_cache/
|
126 |
+
.dmypy.json
|
127 |
+
dmypy.json
|
128 |
+
|
129 |
+
# Pyre type checker
|
130 |
+
.pyre/
|
131 |
+
|
132 |
+
.vscode/
|
133 |
+
|
134 |
+
data/audio/
|
.streamlit/config.toml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[theme]
|
2 |
+
primaryColor="#e5ab00"
|
3 |
+
backgroundColor="#0e1117"
|
4 |
+
secondaryBackgroundColor="#282929"
|
5 |
+
textColor = "#ffffff"
|
6 |
+
font="sans serif"
|
7 |
+
|
8 |
+
[server]
|
9 |
+
maxUploadSize = 200
|
Dockerfile
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.11-slim
|
2 |
+
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
COPY ./requirements.txt /app/requirements.txt
|
6 |
+
|
7 |
+
RUN pip3 install --no-cache-dir -r /app/requirements.txt
|
8 |
+
|
9 |
+
# User
|
10 |
+
RUN useradd -m -u 1000 user
|
11 |
+
USER user
|
12 |
+
ENV HOME /home/user
|
13 |
+
ENV PATH $HOME/.local/bin:$PATH
|
14 |
+
|
15 |
+
WORKDIR $HOME
|
16 |
+
RUN mkdir app
|
17 |
+
WORKDIR $HOME/app
|
18 |
+
COPY . $HOME/app
|
19 |
+
|
20 |
+
EXPOSE 8501
|
21 |
+
CMD streamlit run app.py
|
README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: SoccerTwos Analytics
|
3 |
+
emoji: ⚽
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: green
|
6 |
+
sdk: docker
|
7 |
+
app_port: 8501
|
8 |
+
pinned: true
|
9 |
+
duplicated_from: cyllum/soccertwos-analytics
|
10 |
+
---
|
11 |
+
|
12 |
+
## SoccerTwos Analytics
|
13 |
+
|
14 |
+
A dashboard for analysing your team's performance in the [SoccerTwos competition](https://huggingface.co/spaces/huggingface-projects/AIvsAI-SoccerTwos).
|
app.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
import streamlit as st
|
5 |
+
import timeago
|
6 |
+
import plotly.graph_objects as go
|
7 |
+
|
8 |
+
|
9 |
+
st.set_page_config(layout="wide")
|
10 |
+
st.markdown(
|
11 |
+
"""
|
12 |
+
<style>
|
13 |
+
.block-container {
|
14 |
+
padding-top: 1rem;
|
15 |
+
}
|
16 |
+
#MainMenu {visibility: hidden;}
|
17 |
+
</style>
|
18 |
+
""",
|
19 |
+
unsafe_allow_html=True
|
20 |
+
)
|
21 |
+
|
22 |
+
now = datetime.datetime.now()
|
23 |
+
MATCH_RESULTS_URL = "https://huggingface.co/datasets/huggingface-projects/bot-fight-data/raw/main/soccer_history.csv"
|
24 |
+
|
25 |
+
|
26 |
+
@st.cache_data(ttl=1800)
|
27 |
+
def fetch_match_history():
|
28 |
+
"""
|
29 |
+
Fetch match history.
|
30 |
+
Cache the result for 30min to avoid unnecessary requests.
|
31 |
+
Return a DataFrame.
|
32 |
+
"""
|
33 |
+
df = pd.read_csv(MATCH_RESULTS_URL)
|
34 |
+
df["timestamp"] = pd.to_datetime(df.timestamp, unit="s")
|
35 |
+
df.columns = ["home", "away", "timestamp", "result"]
|
36 |
+
return df
|
37 |
+
|
38 |
+
|
39 |
+
def days_left():
|
40 |
+
end_date = datetime.date(2023, 4, 30)
|
41 |
+
today = datetime.date.today()
|
42 |
+
time_until_date = end_date - today
|
43 |
+
return time_until_date.days
|
44 |
+
|
45 |
+
|
46 |
+
def num_matches_played():
|
47 |
+
return match_df.shape[0]
|
48 |
+
|
49 |
+
|
50 |
+
match_df = fetch_match_history()
|
51 |
+
teams = sorted(
|
52 |
+
list(pd.concat([match_df["home"], match_df["away"]]).unique()), key=str.casefold
|
53 |
+
)
|
54 |
+
|
55 |
+
st.title("🤗 SoccerTwos Challenge Analytics")
|
56 |
+
|
57 |
+
team_results = {}
|
58 |
+
for i, row in match_df.iterrows():
|
59 |
+
home_team = row["home"]
|
60 |
+
away_team = row["away"]
|
61 |
+
result = row["result"]
|
62 |
+
|
63 |
+
if home_team not in team_results:
|
64 |
+
team_results[home_team] = [0, 0, 0]
|
65 |
+
|
66 |
+
if away_team not in team_results:
|
67 |
+
team_results[away_team] = [0, 0, 0]
|
68 |
+
|
69 |
+
if result == 0:
|
70 |
+
team_results[home_team][2] += 1
|
71 |
+
team_results[away_team][0] += 1
|
72 |
+
elif result == 1:
|
73 |
+
team_results[home_team][0] += 1
|
74 |
+
team_results[away_team][2] += 1
|
75 |
+
else:
|
76 |
+
team_results[home_team][1] += 1
|
77 |
+
team_results[away_team][1] += 1
|
78 |
+
|
79 |
+
|
80 |
+
df = pd.DataFrame.from_dict(
|
81 |
+
team_results, orient="index", columns=["wins", "draws", "losses"]
|
82 |
+
).sort_index()
|
83 |
+
df[["owner", "team"]] = df.index.to_series().str.split("/", expand=True)
|
84 |
+
df = df[["owner", "team", "wins", "draws", "losses"]]
|
85 |
+
df["win_pct"] = (df["wins"] / (df["wins"] + df["draws"] + df["losses"])) * 100
|
86 |
+
|
87 |
+
stats = df
|
88 |
+
|
89 |
+
tab_team, tab_competition = st.tabs(["Results", "Competition stats"])
|
90 |
+
|
91 |
+
|
92 |
+
def get_text_result(row, team_name):
|
93 |
+
if row["home"] == team_name:
|
94 |
+
if row["result"] == 1:
|
95 |
+
return "Win"
|
96 |
+
elif row["result"] == 0.5:
|
97 |
+
return "Draw"
|
98 |
+
else:
|
99 |
+
return "Loss"
|
100 |
+
elif row["away"] == team_name:
|
101 |
+
if row["result"] == 0:
|
102 |
+
return "Win"
|
103 |
+
elif row["result"] == 0.5:
|
104 |
+
return "Draw"
|
105 |
+
else:
|
106 |
+
return "Loss"
|
107 |
+
|
108 |
+
|
109 |
+
with tab_team:
|
110 |
+
team = st.selectbox("Team", teams)
|
111 |
+
|
112 |
+
col1, col2 = st.columns(2)
|
113 |
+
|
114 |
+
with col1:
|
115 |
+
c1, c2, c3 = st.columns(3)
|
116 |
+
with c1:
|
117 |
+
st.metric("Wins", f"{stats.loc[[team]]['wins'][0]}")
|
118 |
+
with c2:
|
119 |
+
st.metric("Draws", f"{stats.loc[[team]]['draws'][0]}")
|
120 |
+
with c3:
|
121 |
+
st.metric("Losses", f"{stats.loc[[team]]['losses'][0]}")
|
122 |
+
|
123 |
+
st.write("Results")
|
124 |
+
res_df = match_df[(match_df["home"] == team) | (match_df["away"] == team)]
|
125 |
+
res_df["result"] = res_df.apply(lambda row: get_text_result(row, team), axis=1)
|
126 |
+
opponent_column = res_df.apply(
|
127 |
+
lambda row: row["away"] if row["home"] == team else row["home"], axis=1
|
128 |
+
)
|
129 |
+
res_df["vs"] = opponent_column
|
130 |
+
result_column = res_df["result"]
|
131 |
+
new_df = pd.concat([opponent_column, result_column], axis=1)
|
132 |
+
new_df.columns = ["vs", "result"]
|
133 |
+
res_df[["owner", "team"]] = res_df["vs"].str.split("/", expand=True)
|
134 |
+
res_df["played"] = res_df["timestamp"].apply(lambda x: timeago.format(x, now))
|
135 |
+
res_df.sort_values(by=["timestamp"], ascending=True, inplace=True)
|
136 |
+
disp_res_df = res_df.drop(["home", "away", "vs", "timestamp"], axis=1)
|
137 |
+
|
138 |
+
def highlight_results(s):
|
139 |
+
colour = {
|
140 |
+
"Win": "LightGreen",
|
141 |
+
"Draw": "LightYellow",
|
142 |
+
"Loss": "LightSalmon",
|
143 |
+
}
|
144 |
+
return [f"background-color: {colour[s.result]}"] * len(s)
|
145 |
+
|
146 |
+
# Create a friendly index.
|
147 |
+
disp_res_df.reset_index(inplace=True, drop=True)
|
148 |
+
disp_res_df.index += 1
|
149 |
+
disp_res_df = disp_res_df.iloc[::-1]
|
150 |
+
|
151 |
+
# Display the table.
|
152 |
+
st.dataframe(disp_res_df.style.apply(highlight_results, axis=1))
|
153 |
+
|
154 |
+
with col2:
|
155 |
+
c1, c2 = st.columns(2)
|
156 |
+
with c1:
|
157 |
+
st.metric("Win rate", f"{stats.loc[[team]]['win_pct'][0]:.2f}%")
|
158 |
+
|
159 |
+
joined = res_df["timestamp"].min()
|
160 |
+
with c2:
|
161 |
+
st.metric("Competing since", f"{timeago.format(joined, now)}")
|
162 |
+
|
163 |
+
grouped = (
|
164 |
+
res_df.groupby([res_df["timestamp"].dt.date, "result"])
|
165 |
+
.size()
|
166 |
+
.reset_index(name="count")
|
167 |
+
)
|
168 |
+
|
169 |
+
loss_trace = go.Bar(
|
170 |
+
x=grouped.loc[grouped["result"] == "Loss", "timestamp"],
|
171 |
+
y=grouped.loc[grouped["result"] == "Loss", "count"],
|
172 |
+
name="Losses",
|
173 |
+
marker=dict(color="red"),
|
174 |
+
)
|
175 |
+
draw_trace = go.Bar(
|
176 |
+
x=grouped.loc[grouped["result"] == "Draw", "timestamp"],
|
177 |
+
y=grouped.loc[grouped["result"] == "Draw", "count"],
|
178 |
+
name="Draws",
|
179 |
+
marker=dict(color="orange"),
|
180 |
+
)
|
181 |
+
win_trace = go.Bar(
|
182 |
+
x=grouped.loc[grouped["result"] == "Win", "timestamp"],
|
183 |
+
y=grouped.loc[grouped["result"] == "Win", "count"],
|
184 |
+
name="Wins",
|
185 |
+
marker=dict(color="green"),
|
186 |
+
)
|
187 |
+
|
188 |
+
fig = go.Figure(data=[loss_trace, draw_trace, win_trace])
|
189 |
+
fig.update_layout(barmode="stack")
|
190 |
+
st.plotly_chart(fig)
|
191 |
+
|
192 |
+
|
193 |
+
with tab_competition:
|
194 |
+
col1, col2, col3 = st.columns(3)
|
195 |
+
|
196 |
+
col1.metric("Matches played", f"{num_matches_played():,d}")
|
197 |
+
col2.metric("Live models", f"{len(teams)}")
|
198 |
+
col3.metric("Season ends in", f"{days_left()} days")
|
199 |
+
|
200 |
+
match_counts = (
|
201 |
+
match_df.groupby(match_df["timestamp"].dt.date).size().reset_index(name="count")
|
202 |
+
)
|
203 |
+
match_counts["matches_played"] = match_counts["count"].cumsum()
|
204 |
+
|
205 |
+
st.title("Matches played")
|
206 |
+
st.area_chart(match_counts.set_index("timestamp")["matches_played"])
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
numpy
|
3 |
+
pandas
|
4 |
+
plotly
|
5 |
+
timeago
|