hedtorresca's picture
Update app.py
adc8c2e verified
raw
history blame
6.64 kB
import gradio as gr
import matplotlib.pyplot as plt
from matplotlib_venn import venn3
from io import BytesIO
from PIL import Image
import pandas as pd
def validate_inputs(A, B, C, AB, AC, BC, ABC, U):
union_ABC = A + B + C - AB - AC - BC + ABC
errors = []
if U < union_ABC:
errors.append(f"El conjunto universal U ({U}) no puede ser menor que la unión de A, B, C ({union_ABC}).")
if A < AB + AC - ABC:
errors.append(f"A no puede ser menor que A∩B + A∩C - A∩B∩C: {AB + AC - ABC}")
if B < AB + BC - ABC:
errors.append(f"B no puede ser menor que A∩B + B∩C - A∩B∩C: {AB + BC - ABC}")
if C < AC + BC - ABC:
errors.append(f"C no puede ser menor que A∩C + B∩C - A∩B∩C: {AC + BC - ABC}")
if ABC > AC:
errors.append(f"A∩B∩C no puede ser mayor que A∩C: {AC}")
if ABC > AB:
errors.append(f"A∩B∩C no puede ser mayor que A∩B: {AC}")
if ABC > BC:
errors.append(f"A∩B∩C no puede ser mayor que B∩C: {AC}")
return errors
def suggest_intersections(A, B, C, AB, AC, BC, ABC, U):
union_ABC = A + B + C - AB - AC - BC + ABC
max_AB = min(A, B, ABC)
max_AC = min(A, C, ABC)
max_BC = min(B, C, ABC)
max_ABC = min(AB, AC, BC)
suggestions = {
"Mínimo valor sugerido para U": union_ABC,
"Máximo valor sugerido para A ∩ B": max_AB,
"Máximo valor sugerido para A ∩ C": max_AC,
"Máximo valor sugerido para B ∩ C": max_BC,
"Máximo valor sugerido para A ∩ B ∩ C": max_ABC,
}
return suggestions
def calculate_probabilities(A, B, C, AB, AC, BC, ABC, U):
total = U if U > 0 else (A + B + C - AB - AC - BC + ABC)
if total == 0:
return {
"P(A)": 0,
"P(B)": 0,
"P(C)": 0,
"P(A ∩ B)": 0,
"P(A ∩ C)": 0,
"P(B ∩ C)": 0,
"P(A ∩ B ∩ C)": 0,
}
P_A = A / total
P_B = B / total
P_C = C / total
P_AB = AB / total
P_AC = AC / total
P_BC = BC / total
P_ABC = ABC / total
PA_given_B = P_AB / P_B if P_B > 0 else 0
PA_given_C = P_AC / P_C if P_C > 0 else 0
PB_given_C = P_BC / P_C if P_C > 0 else 0
PB_given_A = P_AB / P_A if P_A > 0 else 0
PC_given_A = P_AC / P_A if P_A > 0 else 0
PC_given_B = P_BC / P_B if P_B > 0 else 0
# Cálculo de las probabilidades condicionales utilizando el teorema de Bayes
P_A_given_B_bayes = (PB_given_A * P_A) / P_B if P_B > 0 else 0
P_B_given_A_bayes = (PA_given_B * P_B) / P_A if P_A > 0 else 0
P_A_given_C_bayes = (PC_given_A * P_A) / P_C if P_C > 0 else 0
P_C_given_A_bayes = (PA_given_C * P_C) / P_A if P_A > 0 else 0
P_B_given_C_bayes = (PC_given_B * P_B) / P_C if P_C > 0 else 0
P_C_given_B_bayes = (PB_given_C * P_C) / P_B if P_B > 0 else 0
formatted_probs = {
"P(A)": f"{P_A:.2%} ({A}/{total})",
"P(B)": f"{P_B:.2%} ({B}/{total})",
"P(C)": f"{P_C:.2%} ({C}/{total})",
"P(A ∩ B)": f"{P_AB:.2%} ({AB}/{total})",
"P(A ∩ C)": f"{P_AC:.2%} ({AC}/{total})",
"P(B ∩ C)": f"{P_BC:.2%} ({BC}/{total})",
"P(A ∩ B ∩ C)": f"{P_ABC:.2%} ({ABC}/{total})",
"P(A | B)": f"{PA_given_B:.2%} (P(A ∩ B) / P(B)) = ({P_AB:.4f} / {P_B:.4f}) = ({AB} / {B})",
"P(A | C)": f"{PA_given_C:.2%} (P(A ∩ C) / P(C)) = ({P_AC:.4f} / {P_C:.4f}) = ({AC} / {C})",
"P(B | C)": f"{PB_given_C:.2%} (P(B ∩ C) / P(C)) = ({P_BC:.4f} / {P_C:.4f}) = ({BC} / {C})",
"P(B | A)": f"{PB_given_A:.2%} (P(B ∩ A) / P(A)) = ({P_AB:.4f} / {P_A:.4f}) = ({AB} / {A})",
"P(C | A)": f"{PC_given_A:.2%} (P(C ∩ A) / P(A)) = ({P_AC:.4f} / {P_A:.4f}) = ({AC} / {A})",
"P(C | B)": f"{PC_given_B:.2%} (P(C ∩ B) / P(B)) = ({P_BC:.4f} / {P_B:.4f}) = ({BC} / {B})",
"P(A | B) (T. Bayes)": f"{P_A_given_B_bayes:.2%} (Teorema de Bayes: (P(B | A) * P(A)) / P(B)) = ({PB_given_A:.4f} * {P_A:.4f} / {P_B:.4f})",
"P(A | C) (T. Bayes)": f"{P_A_given_C_bayes:.2%} (Teorema de Bayes: (P(C | A) * P(A)) / P(C)) = ({PC_given_A:.4f} * {P_A:.4f} / {P_C:.4f})",
"P(B | C) (T. Bayes)": f"{P_B_given_C_bayes:.2%} (Teorema de Bayes: (P(C | B) * P(B)) / P(C)) = ({PC_given_B:.4f} * {P_B:.4f} / {P_C:.4f})",
"P(B | A) (T. Bayes)": f"{P_B_given_A_bayes:.2%} (Teorema de Bayes: (P(A | B) * P(B)) / P(A)) = ({PA_given_B:.4f} * {P_B:.4f} / {P_A:.4f})",
"P(C | A) (T. Bayes)": f"{P_C_given_A_bayes:.2%} (Teorema de Bayes: (P(A | C) * P(C)) / P(A)) = ({PA_given_C:.4f} * {P_C:.4f} / {P_A:.4f})",
"P(C | B) (T. Bayes)": f"{P_C_given_B_bayes:.2%} (Teorema de Bayes: (P(B | C) * P(C)) / P(B)) = ({PB_given_C:.4f} * {P_C:.4f} / {P_B:.4f})",
"U (Universal Set)": total,
"Complemento de A U B U C": U - (A + B + C - AB - AC - BC + ABC)
}
# Convert to DataFrame for better visualization
df = pd.DataFrame(list(formatted_probs.items()), columns=["Descripción", "Valor"])
return df
def draw_venn(A, B, C, AB, AC, BC, ABC):
plt.figure(figsize=(10,10))
venn = venn3(subsets=(max(0, A - AB - AC + ABC), max(0,B - AB - BC + ABC), max(0,AB - ABC), max(0,C- AC - BC + ABC), max(AC - ABC, 0), max(BC - ABC,0), ABC), set_labels=('A', 'B', 'C'))
img = BytesIO()
plt.savefig(img, format='png')
img.seek(0)
image = Image.open(img)
return image
def main(U, A, B, C, AB, AC, BC, ABC):
errors = validate_inputs(A, B, C, AB, AC, BC, ABC, U)
if errors:
return {"Errores de validación": errors}, None, None
suggestions = suggest_intersections(A, B, C, AB, AC, BC, ABC, U)
probabilities_df = calculate_probabilities(A, B, C, AB, AC, BC, ABC, U)
venn_image = draw_venn(A, B, C, AB, AC, BC, ABC)
return suggestions, probabilities_df, venn_image
# Gradio Interface
interface = gr.Interface(
fn=main,
inputs=[
gr.Number(label="U (Universal Set)"),
gr.Number(label="A"),
gr.Number(label="B"),
gr.Number(label="C"),
gr.Number(label="A ∩ B"),
gr.Number(label="A ∩ C"),
gr.Number(label="B ∩ C"),
gr.Number(label="A ∩ B ∩ C")
],
outputs=[
gr.JSON(label="Sugerencias de Intersección"),
gr.Dataframe(label="Tabla de Probabilidades"),
gr.Image(type="pil", label="Diagrama de Venn")
],
title="Calculadora de Probabilidades y Diagrama de Venn",
description="Calcula las probabilidades, intersecciones sugeridas y genera un diagrama de Venn.",
live=True
)
if __name__ == "__main__":
interface.launch()