import gradio as gr import matplotlib.pyplot as plt from matplotlib_venn import venn2, venn3 from io import BytesIO from PIL import Image import pandas as pd # Funciones para el caso de tres conjuntos A, B y C def validate_inputs(U, A, B, C, AB, AC, BC, ABC): union_ABC = A + B + C - AB - AC - BC + ABC errors = [] if U < union_ABC: errors.append(f"El conjunto universal U ({U}) no puede ser menor que la unión de A, B, C ({union_ABC}).") if A < AB + AC - ABC: errors.append(f"A ({A}) no puede ser menor que la suma de A∩B y A∩C, menos A∩B∩C ({AB + AC - ABC}).") if B < AB + BC - ABC: errors.append(f"B ({B}) no puede ser menor que la suma de A∩B y B∩C, menos A∩B∩C ({AB + BC - ABC}).") if C < AC + BC - ABC: errors.append(f"C ({C}) no puede ser menor que la suma de A∩C y B∩C, menos A∩B∩C ({AC + BC - ABC}).") if ABC > AB: errors.append(f"A∩B∩C ({ABC}) no puede ser mayor que A∩B ({AB}).") if ABC > AC: errors.append(f"A∩B∩C ({ABC}) no puede ser mayor que A∩C ({AC}).") if ABC > BC: errors.append(f"A∩B∩C ({ABC}) no puede ser mayor que B∩C ({BC}).") return errors def suggest_intersections(U, A, B, C, AB, AC, BC, ABC): union_ABC = A + B + C - AB - AC - BC + ABC min_AB = min(A, B, ABC) min_AC = min(A, C, ABC) min_BC = min(B, C, ABC) max_AB = min(A, B) max_AC = min(A, C) max_BC = min(B, C) max_ABC = min(AB, AC, BC) suggestions = { "Mínimo valor sugerido para U": union_ABC, "Valor sugerido para A ∩ B ": f"{min_AB} - {max_AB}", "Valor sugerido para A ∩ C": f"{min_AC} - {max_AC}", "Valor sugerido para B ∩ C": f"{min_BC} - {max_BC}", "Máximo valor sugerido para A ∩ B ∩ C": max_ABC, } return suggestions def calculate_probabilities(U, A, B, C, AB, AC, BC, ABC): total = U if U > 0 else (A + B + C - AB - AC - BC + ABC) if total == 0: return { "P(A)": 0, "P(B)": 0, "P(C)": 0, "P(A ∩ B)": 0, "P(A ∩ C)": 0, "P(B ∩ C)": 0, "P(A ∩ B ∩ C)": 0, } P_A = A / total P_B = B / total P_C = C / total P_AB = AB / total P_AC = AC / total P_BC = BC / total P_ABC = ABC / total PA_given_B = P_AB / P_B if P_B > 0 else 0 PA_given_C = P_AC / P_C if P_C > 0 else 0 PB_given_C = P_BC / P_C if P_C > 0 else 0 PB_given_A = P_AB / P_A if P_A > 0 else 0 PC_given_A = P_AC / P_A if P_A > 0 else 0 PC_given_B = P_BC / P_B if P_B > 0 else 0 # Cálculo de las probabilidades condicionales utilizando el teorema de Bayes P_A_given_B_bayes = (PB_given_A * P_A) / P_B if P_B > 0 else 0 P_B_given_A_bayes = (PA_given_B * P_B) / P_A if P_A > 0 else 0 P_A_given_C_bayes = (PC_given_A * P_A) / P_C if P_C > 0 else 0 P_C_given_A_bayes = (PA_given_C * P_C) / P_A if P_A > 0 else 0 P_B_given_C_bayes = (PC_given_B * P_B) / P_C if P_C > 0 else 0 P_C_given_B_bayes = (PB_given_C * P_C) / P_B if P_B > 0 else 0 # Probabilidades de uniones P_A_union_B = P_A + P_B - P_AB P_A_union_C = P_A + P_C - P_AC P_B_union_C = P_B + P_C - P_BC P_A_union_B_union_C = P_A + P_B + P_C - P_AB - P_AC - P_BC + P_ABC formatted_probs = { "P(A)": f"{P_A:.2%} ({A}/{total})", "P(B)": f"{P_B:.2%} ({B}/{total})", "P(C)": f"{P_C:.2%} ({C}/{total})", "P(A ∩ B)": f"{P_AB:.2%} ({AB}/{total})", "P(A ∩ C)": f"{P_AC:.2%} ({AC}/{total})", "P(B ∩ C)": f"{P_BC:.2%} ({BC}/{total})", "P(A ∩ B ∩ C)": f"{P_ABC:.2%} ({ABC}/{total})", "P(A | B)": f"{PA_given_B:.2%} (P(A ∩ B) / P(B)) = ({P_AB:.4f} / {P_B:.4f}) = ((A ∩ B) / B) = ({AB} / {B})", "P(A | C)": f"{PA_given_C:.2%} (P(A ∩ C) / P(C)) = ({P_AC:.4f} / {P_C:.4f}) = ((A ∩ C) / C) = ({AC} / {C})", "P(B | C)": f"{PB_given_C:.2%} (P(B ∩ C) / P(C)) = ({P_BC:.4f} / {P_C:.4f}) = ((B ∩ C) / C) = ({BC} / {C})", "P(B | A)": f"{PB_given_A:.2%} (P(B ∩ A) / P(A)) = ({P_AB:.4f} / {P_A:.4f}) = ((B ∩ A) / A) = ({AB} / {A})", "P(C | A)": f"{PC_given_A:.2%} (P(C ∩ A) / P(A)) = ({P_AC:.4f} / {P_A:.4f}) = ((C ∩ A) / A) = ({AC} / {A})", "P(C | B)": f"{PC_given_B:.2%} (P(C ∩ B) / P(B)) = ({P_BC:.4f} / {P_B:.4f}) = ((C ∩ B) / B) = ({BC} / {B})", "P(A | B) (T. Bayes)": f"{P_A_given_B_bayes:.2%} (Teorema de Bayes: (P(B | A) * P(A)) / P(B)) = ({PB_given_A:.4f} * {P_A:.4f} / {P_B:.4f})", "P(A | C) (T. Bayes)": f"{P_A_given_C_bayes:.2%} (Teorema de Bayes: (P(C | A) * P(A)) / P(C)) = ({PC_given_A:.4f} * {P_A:.4f} / {P_C:.4f})", "P(B | C) (T. Bayes)": f"{P_B_given_C_bayes:.2%} (Teorema de Bayes: (P(C | B) * P(B)) / P(C)) = ({PC_given_B:.4f} * {P_B:.4f} / {P_C:.4f})", "P(B | A) (T. Bayes)": f"{P_B_given_A_bayes:.2%} (Teorema de Bayes: (P(A | B) * P(B)) / P(A)) = ({PA_given_B:.4f} * {P_B:.4f} / {P_A:.4f})", "P(C | A) (T. Bayes)": f"{P_C_given_A_bayes:.2%} (Teorema de Bayes: (P(A | C) * P(C)) / P(A)) = ({PA_given_C:.4f} * {P_C:.4f} / {P_A:.4f})", "P(C | B) (T. Bayes)": f"{P_C_given_B_bayes:.2%} (Teorema de Bayes: (P(B | C) * P(C)) / P(B)) = ({PB_given_C:.4f} * {P_C:.4f} / {P_B:.4f})", "P(A ∪ B)": f"{P_A_union_B:.2%} (P(A) + P(B) - P(A ∩ B)) = ({P_A:.4f} + {P_B:.4f} - {P_AB:.4f}) = (A + B - A ∩ B) / U = ({A} + {B} - {AB}) / {U}", "P(A ∪ C)": f"{P_A_union_C:.2%} (P(A) + P(C) - P(A ∩ C)) = ({P_A:.4f} + {P_C:.4f} - {P_AC:.4f}) = (A + C - A ∩ C) / U = ({A} + {C} - {AC}) / {U} ", "P(B ∪ C)": f"{P_B_union_C:.2%} (P(B) + P(C) - P(B ∩ C)) = ({P_B:.4f} + {P_C:.4f} - {P_BC:.4f}) = (B + C - B ∩ C) / U = ({B} + {C} - {BC}) /{U} ", "P(A ∪ B ∪ C)": f"{P_A_union_B_union_C:.2%} (P(A) + P(B) + P(C) - P(A ∩ B) - P(A ∩ C) - P(B ∩ C) + P(A ∩ B ∩ C)) = ({P_A:.4f} + {P_B:.4f} + {P_C:.4f} - {P_AB:.4f} - {P_AC:.4f} - {P_BC:.4f} + {P_ABC:.4f})", "U (Universal Set)": total, "Complemento de A U B U C": U - (A + B + C - AB - AC - BC + ABC) } # Convertir a DataFrame para mejor visualización df = pd.DataFrame(list(formatted_probs.items()), columns=["Descripción", "Valor"]) return df def draw_venn(U, A, B, C, AB, AC, BC, ABC): plt.figure(figsize=(10,10)) venn = venn3(subsets=(max(0, A - AB - AC + ABC), max(0,B - AB - BC + ABC), max(0,AB - ABC), max(0,C- AC - BC + ABC), max(AC - ABC, 0), max(BC - ABC,0), ABC), set_labels=('A', 'B', 'C')) img = BytesIO() plt.title(f"Diagrama de Venn U = {U}") plt.savefig(img, format='png') img.seek(0) image = Image.open(img) return image def main(U, A, B, C, AB, AC, BC, ABC): errors = validate_inputs(U, A, B, C, AB, AC, BC, ABC) if errors: return None, pd.DataFrame({"Errores de validación": errors}), {} venn_image = draw_venn(U, A, B, C, AB, AC, BC, ABC) probabilities_df = calculate_probabilities(U, A, B, C, AB, AC, BC, ABC) suggestions = suggest_intersections(U, A, B, C, AB, AC, BC, ABC) return venn_image, probabilities_df, suggestions # Funciones para el caso de dos conjuntos A y B def calculate_probabilities_2(U, A, B, AB): total = U if U > 0 else (A + B - AB) if total == 0: return { "P(A)": 0, "P(B)": 0, "P(A ∩ B)": 0, } P_A = A / total P_B = B / total P_AB = AB / total PA_given_B = P_AB / P_B if P_B > 0 else 0 PB_given_A = P_AB / P_A if P_A > 0 else 0 P_A_union_B = P_A + P_B - P_AB formatted_probs = { "P(A)": f"{P_A:.2%} ({A}/{total})", "P(B)": f"{P_B:.2%} ({B}/{total})", "P(A ∩ B)": f"{P_AB:.2%} ({AB}/{total})", "P(A | B)": f"{PA_given_B:.2%} (P(A ∩ B) / P(B)) = ({P_AB:.4f} / {P_B:.4f}) = ((A ∩ B) / B) = ({AB} / {B})", "P(B | A)": f"{PB_given_A:.2%} (P(B ∩ A) / P(A)) = ({P_AB:.4f} / {P_A:.4f}) = ((B ∩ A) / A) = ({AB} / {A})", "P(A ∪ B)": f"{P_A_union_B:.2%} (P(A) + P(B) - P(A ∩ B)) = ({P_A:.4f} + {P_B:.4f} - {P_AB:.4f}) = (A + B - A ∩ B) / U = ({A} + {B} - {AB}) / {U}", "U (Universal Set)": total, "Complemento de A U B": U - (A + B - AB) } df = pd.DataFrame(list(formatted_probs.items()), columns=["Descripción", "Valor"]) return df def suggest_intersections_2(U, A, B, AB): union_AB = A + B - AB min_AB = min(A, B) max_AB = min(A, B) suggestions = { "Mínimo valor sugerido para U": union_AB, "Valor sugerido para A ∩ B": f"0 - {max_AB}", } return suggestions def validate_inputs_2(U, A, B, AB): union_AB = A + B - AB errors = [] if U < union_AB: errors.append(f"El conjunto universal U ({U}) no puede ser menor que la unión de A y B ({union_AB}).") if A < AB: errors.append(f"A ({A}) no puede ser menor que A∩B ({AB}).") if B < AB: errors.append(f"B ({B}) no puede ser menor que A∩B ({AB}).") return errors def draw_venn_2(U, A, B, AB): plt.figure(figsize=(10, 10)) venn = venn2(subsets=(A - AB, B - AB, AB), set_labels=('A', 'B')) img = BytesIO() plt.title(f"Diagrama de Venn U = {U}") plt.savefig(img, format='png') img.seek(0) image = Image.open(img) return image def main_2(U, A, B, AB): errors = validate_inputs_2(U, A, B, AB) if errors: return None, pd.DataFrame({"Errores de validación": errors}), {} venn_image = draw_venn_2(U, A, B, AB) probabilities_df = calculate_probabilities_2(U, A, B, AB) suggestions = suggest_intersections_2(U, A, B, AB) return venn_image, probabilities_df, suggestions # Interfaz para dos conjuntos A y B interface_2 = gr.Interface( fn=main_2, inputs=[ gr.Number(label="U (Universal Set)"), gr.Number(label="A"), gr.Number(label="B"), gr.Number(label="A ∩ B") ], outputs=[ gr.Image(type="pil", label="Diagrama de Venn"), gr.Dataframe(label="Tabla de Probabilidades"), gr.JSON(label="Sugerencias de Intersección") ], title="Calculadora de Probabilidades y Diagrama de Venn para dos conjuntos (A y B)", description="Calcula las probabilidades y genera un diagrama de Venn para dos conjuntos.", live=True ) # Interfaz para tres conjuntos A, B y C interface_3 = gr.Interface( fn=main, inputs=[ gr.Number(label="U (Universal Set)"), gr.Number(label="A"), gr.Number(label="B"), gr.Number(label="C"), gr.Number(label="A ∩ B"), gr.Number(label="A ∩ C"), gr.Number(label="B ∩ C"), gr.Number(label="A ∩ B ∩ C") ], outputs=[ gr.Image(type="pil", label="Diagrama de Venn"), gr.Dataframe(label="Tabla de Probabilidades"), gr.JSON(label="Sugerencias de Intersección") ], title="Calculadora de Probabilidades y Diagrama de Venn para tres conjuntos (A, B y C)", description="Calcula las probabilidades y genera un diagrama de Venn para tres conjuntos.", live=True ) # Combinar ambas interfaces en una tabbed interface tabbed_interface = gr.TabbedInterface([interface_2, interface_3], ["Dos conjuntos (A y B)", "Tres conjuntos (A, B y C)"]) if __name__ == "__main__": tabbed_interface.launch()