Spaces:
Sleeping
Sleeping
File size: 5,152 Bytes
f7b9392 924483b f7b9392 924483b f7b9392 924483b f7b9392 924483b f7b9392 924483b f7b9392 924483b f7b9392 924483b f7b9392 56a76eb 924483b f7b9392 56a76eb f7b9392 924483b f7b9392 924483b f7b9392 924483b 56a76eb 924483b f7b9392 56a76eb f7b9392 924483b f7b9392 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import random\n",
"import time\n",
"from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer\n",
"\n",
"model_name=\"heegyu/bluechat-v0\"\n",
"device=\"cuda:0\" if torch.cuda.is_available() else 'cpu'\n",
"model = AutoModelForCausalLM.from_pretrained(model_name)\n",
"tokenizer = AutoTokenizer.from_pretrained(model_name)"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [],
"source": [
"\n",
"def query(prompt, min_new_tokens=16, max_turn=4):\n",
" ids = tokenizer(prompt.strip(), return_tensors=\"pt\").to(device)\n",
" min_length = ids['input_ids'].shape[1] + min_new_tokens\n",
" output = model.generate(\n",
" **ids,\n",
" no_repeat_ngram_size=3,\n",
" eos_token_id=2, # 375=\\n 2=</s>, 0:open-end\n",
" max_new_tokens=128,\n",
" min_length=min_length,\n",
" do_sample=True,\n",
" top_p=0.7,\n",
" early_stopping=True\n",
" ) # [0]['generated_text']\n",
" output = tokenizer.decode(output.cpu()[0])\n",
" print(output)\n",
"\n",
" # response = output[len(prompt):]\n",
" # return response.strip()"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Setting `pad_token_id` to `eos_token_id`:0 for open-end generation.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"0 : μλ
νμΈμ</s>\n",
"1 : λ°κ°μμ</s>\n",
"0 : μμ¦ μ’μνλ μμ
μμΌμ κ°μ?</s>\n",
"1 : μ΅κ·Όμ λ€μ΄μμΈμ§ λ무 λ§μ΄ λ€μ΄μ</s>\n",
"0 : μ μ£Όλ‘ μ΄λ€κ±°μ?</s>\n",
"1 : \n",
" music : music songs μλ‘곑μ μ¦κ²¨λ€μ΄μ</s><bot> μ μ΄λ€ μ₯λ₯΄λ₯Ό μ£Όλ‘ λ€μΌμλμ?</s>\n",
"1 : music songs μ’μ£ </s>\n",
"bot> μ λ μμ¦ λ€μ΄ μ’μνκ² λ κ³‘λ€ μμ£Όλ‘ λ€μ΄μ γ
γ
</s>\n",
"2 : music songs μ΄λ€ λ
Έλλ€ μμ£Ό λ€μ΄μ?</s>\n",
"bot> μ music songs someoneμ΄ μ μΌ μ’λλΌκ΅¬μ γ
γ
</s>\n",
"1 : music songsλ μ΄λ€ κ³‘λ€ μ£Όλ‘ λ€μ΄μ?</s>\n",
"bot> μ music songsλ μ£Όλ‘ music songsλ₯Ό λ§μ΄ λ€μ΄μ γ
γ
</s>\n"
]
}
],
"source": [
"query(\"\"\"\n",
"0 : μλ
νμΈμ</s>\n",
"1 : λ°κ°μμ</s>\n",
"0 : μμ¦ μ’μνλ μμ
μμΌμ κ°μ?</s>\n",
"1 : μ΅κ·Όμ λ€μ΄μμΈμ§ λ무 λ§μ΄ λ€μ΄μ</s>\n",
"0 : μ μ£Όλ‘ μ΄λ€κ±°μ?</s>\n",
"1 : \n",
"\"\"\")"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"<usr> μλ
νμΈμ\n",
"<bot> μλ
νμΈμ~ μ λ
λμ
¨λμ? γ
γ
? γ
γ
</s>\n"
]
}
],
"source": [
"query(\"\"\"\n",
"<usr> μλ
νμΈμ\n",
"<bot>\n",
"\"\"\", 8)"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"<usr> μλ
νμΈμ μμ¬ νμ
¨λμ?\n",
"<bot> μλ
νμΈμ λ€~ μ μ¬ λ¨Ήμμ΄μ μμ¬νμ
¨λμ?\n",
"λ€~ λλμ
¨λμ?</s>\n"
]
}
],
"source": [
"query(\"\"\"\n",
"<usr> μλ
νμΈμ μμ¬ νμ
¨λμ?\n",
"<bot>\n",
"\"\"\", 8)"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"<usr> μ°½μ
μ κ΄μ¬μ΄ μλμ?\n",
"<bot> λ€! κ·Όλ° μμ¦ μ°½μ
μ λν κ΄μ¬μ΄ λ§μ΄ λ¨μ΄μ§λλΌκ΅¬μ</s>\n"
]
}
],
"source": [
"query(\"\"\"\n",
"<usr> μ°½μ
μ κ΄μ¬μ΄ μλμ?\n",
"<bot>\n",
"\"\"\", 8)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|