File size: 934 Bytes
f7477a5
 
 
 
 
 
 
 
 
 
 
 
566593f
f7477a5
 
566593f
f7477a5
 
 
 
10f8736
566593f
f7477a5
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import gradio as gr
from transformers import pipeline

# Load the image classification pipeline from Hugging Face Transformers
pipe = pipeline("image-classification", model="heisenberg3376/vit-base-food-items-v1")

# Define the Gradio interface function
def classify_image(input_image):
    # Perform classification on the input image
    results = pipe(input_image)
    
    # Prepare the output string with all predictions
    confidences = {result['label']: float(result['score']) for result in results}
    
    # Return the concatenated string of predictions
    return confidences

# Create a Gradio interface
iface = gr.Interface(
    fn=classify_image,
    inputs=gr.Image(type="pil", label="Upload an image"),
    outputs=gr.Label(num_top_classes=5),
    title="Image Classification",
    description="Classify food items in images using heisenberg3376/vit-base-food-items-v1"
)

# Launch the Gradio interface
iface.launch()