Spaces:
Running
Running
import streamlit as st | |
# from unsloth import FastLanguageModel | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
from llama_cpp import Llama | |
from huggingface_hub import hf_hub_download | |
import os | |
import sys | |
# # Suppress unwanted outputs (e.g., from unsloth or other libraries) | |
# def suppress_output(): | |
# sys.stdout = open(os.devnull, 'w') # Redirect stdout to devnull | |
# sys.stderr = open(os.devnull, 'w') # Redirect stderr to devnull | |
# def restore_output(): | |
# sys.stdout = sys.__stdout__ # Restore stdout | |
# sys.stderr = sys.__stderr__ # Restore stderr | |
# Load the model (GGUF format) | |
def load_model(): | |
# Define the repository and model filenames for both the base model and LoRA adapter | |
base_model_repo = "helamouri/Meta-Llama-3.1-8B-Q8_0.gguf" | |
base_model_filename = "Meta-Llama-3.1-8B-Q8_0.gguf" | |
adapter_repo = "helamouri/medichat_assignment" | |
# adapter_filename = "llama3_medichat.gguf" # assuming adapter is also in safetensors format | |
adapter_repo = "helamouri/model_medichat_finetuned_v1" | |
# Download the base model and adapter model to local paths | |
base_model_path = hf_hub_download(repo_id=base_model_repo, filename=base_model_filename) | |
adapter_model_path = hf_hub_download(repo_id=adapter_repo, filename=adapter_filename) | |
# Log paths for debugging | |
print(f"Base model path: {base_model_path}") | |
print(f"Adapter model path: {adapter_model_path}") | |
# Load the full model (base model) and the adapter (LoRA) | |
try: | |
model = Llama(model_path=base_model_path) #, adapter_path=adapter_model_path) | |
print("Model loaded successfully.") | |
except ValueError as e: | |
print(f"Error loading model: {e}") | |
raise | |
return model | |
# Generate a response using Llama.cpp | |
def generate_response(model, prompt): | |
print('prompt') | |
print(prompt) | |
response = model( | |
prompt, | |
max_tokens=200, # Maximum tokens for the response | |
temperature=0.7, # Adjust for creativity (lower = deterministic) | |
top_p=0.9, # Nucleus sampling | |
stop=["\n"] # Stop generating when newline is encountered | |
) | |
print('response["choices"]') | |
print(response["choices"]) | |
return response["choices"][0]["text"] | |
# Load the model and tokenizer (GGUF format) | |
# @st.cache_resource | |
# def load_model(): | |
# model_name = "helamouri/model_medichat_finetuned_v1" # Replace with your model's GGUF path | |
# model = FastLanguageModel.from_pretrained(model_name, device='cpu') # Load the model using unsloth | |
# tokenizer = model.tokenizer # Assuming the tokenizer is part of the GGUF model object | |
# return tokenizer, model | |
# @st.cache_resource | |
# def load_model(): | |
# model_name = "helamouri/model_medichat_finetuned_v1" # Replace with your model's path | |
# # Load the tokenizer | |
# tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# # Load the model (if it's a causal language model or suitable model type) | |
# model = AutoModelForCausalLM.from_pretrained(model_name, | |
# device_map="cpu", | |
# revision="main", | |
# quantize=False, | |
# load_in_8bit=False, | |
# load_in_4bit=False, | |
# #torch_dtype=torch.float32 | |
# ) | |
# return tokenizer, model | |
# Suppress unwanted outputs from unsloth or any other libraries during model loading | |
#suppress_output() | |
# Load the GGUF model | |
print('Loading the model') | |
model = load_model() | |
# Restore stdout and stderr | |
#restore_output() | |
# App layout | |
print('Setting App layout') | |
st.title("MediChat: Your AI Medical Consultation Assistant") | |
st.markdown("Ask me anything about your health!") | |
st.write("Enter your symptoms or medical questions below:") | |
# User input | |
print(f'Setting user interface') | |
user_input = st.text_input("Your Question:") | |
if st.button("Get Response"): | |
if user_input: | |
with st.spinner("Generating response..."): | |
# Generate Response | |
response = generate_response(model, user_input) | |
print('Response') | |
print(response) | |
# Display response | |
st.text_area("Response:", value=response, height=200) | |
else: | |
st.warning("Please enter a question.") | |