File size: 9,327 Bytes
55866f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
"""
    This baseline just returns heatmaps as the raw cross attentions.
"""
from concept_attention.flux.src.flux.sampling import prepare, unpack
import torch
import einops
import PIL

from concept_attention.image_generator import FluxGenerator
from concept_attention.segmentation import SegmentationAbstractClass, add_noise_to_image, encode_image
from concept_attention.utils import embed_concepts, linear_normalization

class RawOutputSpaceBaseline():
    """
        This class implements the cross attention baseline. 
    """

    def __init__(
        self,
        model_name: str = "flux-schnell",
        device: str = "cuda",
        offload: bool = True,
        generator = None
    ):
        super(RawOutputSpaceBaseline, self).__init__()
        # Load up the flux generator
        if generator is None:
            self.generator = FluxGenerator(
                model_name=model_name,
                device=device,
                offload=offload,
            )
        else:
            self.generator = generator
        # Unpack the tokenizer
        self.tokenizer = self.generator.t5.tokenizer

    def __call__(
        self,
        prompt,
        concepts,
        seed=4,
        num_steps=4,
        timesteps=None,
        layers=list(range(19)),
        softmax=False,
        height=1024,
        width=1024,
        guidance=0.0,
    ):
        """
            Generate cross attention heatmap visualizations. 

            Args:
            - prompt: str, the prompt to generate the visualizations for
            - seed: int, the seed to use for the visualization

            Returns:
            - attention_maps: torch.Tensor, the attention maps for the prompt
            - tokens: list[str], the tokens in the prompt
            - image: torch.Tensor, the image generated by the
        """
        if timesteps is None:
            timesteps = list(range(num_steps))
        if layers is None:
            layers = list(range(19))
        # Run the image generator
        image, _, all_concept_heatmaps = self.generator.generate_image(
            width=height,
            height=width,
            num_steps=num_steps,
            guidance=guidance,
            seed=seed,
            prompt=prompt,
            concepts=concepts
        )
        # Apply softmax
        if softmax:
            all_concept_heatmaps = torch.nn.functional.softmax(all_concept_heatmaps, dim=-2)

        concept_heatmaps = all_concept_heatmaps[:, layers]
        concept_heatmaps = einops.reduce(
            concept_heatmaps,
            "time layers batch concepts patches -> batch concepts patches",
            reduction="mean"
        )
        # Convert to torch float32
        concept_heatmaps = concept_heatmaps.to(torch.float32)
        concept_heatmaps = einops.rearrange(
            concept_heatmaps,
            "batch concepts (h w) -> batch concepts h w",
            h=64,
            w=64
        )

        return concept_heatmaps, image

class RawOutputSpaceSegmentationModel(SegmentationAbstractClass):

    def __init__(
        self,
        model_name: str = "flux-schnell",
        device: str = "cuda",
        offload: bool = True,
        generator=None,
    ):
        """
            Initialize the segmentation model.
        """
        super(RawOutputSpaceSegmentationModel, self).__init__()
        if generator is not None:
            self.generator = generator
        else:
            # Load up the flux generator
            self.generator = FluxGenerator(
                model_name=model_name,
                device=device,
                offload=offload,
            )

        self.is_schnell = "schnell" in model_name

    def segment_individual_image(
        self,
        image: PIL.Image.Image,
        concepts: list[str],
        caption: str,
        device: str = "cuda",
        offload: bool = False,
        num_samples: int = 1,
        num_steps: int = 4,
        noise_timestep: int = 2,
        seed: int = 4,
        width: int = 1024,
        height: int = 1024,
        stop_after_multimodal_attentions: bool = True,
        layers: list[int] = list(range(19)),
        normalize_concepts=True,
        softmax: bool = False,
        joint_attention_kwargs=None,
        **kwargs
    ):
        """
            Takes a real image and generates a segmentation map. 
        """
        # Encode the image into the VAE latent space
        encoded_image_without_noise = encode_image(
            image,
            self.generator.ae,
            offload=offload,
            device=device,
        )
        # Do N trials
        all_concept_heatmaps = []
        for i in range(num_samples):
            # Add noise to image
            encoded_image, timesteps = add_noise_to_image(
                encoded_image_without_noise,
                num_steps=num_steps,
                noise_timestep=noise_timestep,
                seed=seed + i,
                width=width,
                height=height,
                device=device,
                is_schnell=self.is_schnell,
            )
            # Now run the diffusion model once on the noisy image
            # Encode the concept vectors
            
            if offload:
                self.generator.t5, self.generator.clip = self.generator.t5.to(device), self.generator.clip.to(device)
            inp = prepare(t5=self.generator.t5, clip=self.generator.clip, img=encoded_image, prompt=caption)

            concept_embeddings, concept_ids, concept_vec = embed_concepts(
                self.generator.clip,
                self.generator.t5,
                concepts,
            )

            inp["concepts"] = concept_embeddings.to(encoded_image.device)
            inp["concept_ids"] = concept_ids.to(encoded_image.device)
            inp["concept_vec"] = concept_vec.to(encoded_image.device)
            # offload TEs to CPU, load model to gpu
            if offload:
                self.generator.t5, self.generator.clip = self.generator.t5.cpu(), self.generator.clip.cpu()
                torch.cuda.empty_cache()
                self.generator.model = self.generator.model.to(device)
            # Denoise the intermediate images
            guidance_vec = torch.full((encoded_image.shape[0],), 0.0, device=encoded_image.device, dtype=encoded_image.dtype)
            t_curr = timesteps[0]
            t_prev = timesteps[1]
            t_vec = torch.full((encoded_image.shape[0],), t_curr, dtype=encoded_image.dtype, device=encoded_image.device)
            pred, _, concept_heatmaps = self.generator.model(
                img=inp["img"],
                img_ids=inp["img_ids"],
                txt=inp["txt"],
                txt_ids=inp["txt_ids"],
                concepts=inp["concepts"],
                concept_ids=inp["concept_ids"],
                concept_vec=inp["concept_vec"],
                y=inp["concept_vec"],
                timesteps=t_vec,
                guidance=guidance_vec,
                stop_after_multimodal_attentions=stop_after_multimodal_attentions,
                joint_attention_kwargs=joint_attention_kwargs,
            )

            all_concept_heatmaps.append(concept_heatmaps)

        all_concept_heatmaps = torch.stack(all_concept_heatmaps, dim=0)

        if not stop_after_multimodal_attentions:
            img = inp["img"] + (t_prev - t_curr) * pred
            # decode latents to pixel space
            img = unpack(img.float(), height, width)
            with torch.autocast(device_type=self.generator.device.type, dtype=torch.bfloat16):
                img = self.generator.ae.decode(img)

            if self.generator.offload:
                self.generator.ae.decoder.cpu()
                torch.cuda.empty_cache()
            img = img.clamp(-1, 1)
            img = einops.rearrange(img[0], "c h w -> h w c")
            # reconstructed_image = PIL.Image.fromarray(img.cpu().byte().numpy())
            reconstructed_image = PIL.Image.fromarray((127.5 * (img + 1.0)).cpu().byte().numpy())
        else:
            img = None
            reconstructed_image = None
        # Decode the image 
        if offload:
            self.generator.model.cpu()
            torch.cuda.empty_cache()
            self.generator.ae.decoder.to(device)


        # if layers is not None:
        #     # Pull out the layer index
        #     concept_vectors = concept_vectors[layers]
        #     image_vectors = image_vectors[layers]

        # Apply linear normalization to concepts
        # if normalize_concepts:
        #     concept_vectors = linear_normalization(concept_vectors, dim=-2)

        # Apply softmax
        if softmax:
            all_concept_heatmaps = torch.nn.functional.softmax(all_concept_heatmaps, dim=-2)

        concept_heatmaps = all_concept_heatmaps[:, layers]
        concept_heatmaps = einops.reduce(
            concept_heatmaps,
            "samples layers batch concepts patches -> batch concepts patches",
            reduction="mean"
        )
        # Convert to torch float32
        concept_heatmaps = concept_heatmaps.to(torch.float32)
        concept_heatmaps = einops.rearrange(
            concept_heatmaps,
            "batch concepts (h w) -> batch concepts h w",
            h=64,
            w=64
        )

        return concept_heatmaps, reconstructed_image