File size: 7,993 Bytes
55866f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import PIL
import torch
from daam import trace
from diffusers import DiffusionPipeline
from diffusers.utils.torch_utils import randn_tensor

from concept_attention.segmentation import SegmentationAbstractClass


class DAAMStableDiffusionXLSegmentationModel(SegmentationAbstractClass):

    def __init__(self, device='cuda:3'):
        # Load the SDXL Pipeline
        model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
        self.pipeline = DiffusionPipeline.from_pretrained(
            model_id, 
            use_auth_token=True,
            torch_dtype=torch.float32,
            use_safetensors=True
        )
        self.pipeline = self.pipeline.to(device)
        self.device = device

    def _encode_prompt(self, prompt, guidance_scale=0.0, device="cuda:0"):
        # Get the prompt embeddings
        prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = self.pipeline.encode_prompt(
            prompt,
            None,
            device,
            True,
            negative_prompt=None,
            # lora_scale=None,
            # clip_skip=None,
        )

        return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds

    def _encode_image(self, image: PIL.Image.Image, generator=None):
        image_latents = self.pipeline.vae.encode(image)
        image_latents = image_latents.latent_dist.sample(generator)
        image_latents = self.pipeline.vae.config.scaling_factor * image_latents

        return image_latents

    def _process_added_kwargs(
        self, 
        prompt_embeds, 
        pooled_prompt_embeds,
        height=512,
        width=512, 
    ):
        add_text_embeds = pooled_prompt_embeds
        if self.pipeline.text_encoder_2 is None:
            text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
        else:
            text_encoder_projection_dim = self.pipeline.text_encoder_2.config.projection_dim
        add_time_ids = self.pipeline._get_add_time_ids(
            (height, width),
            (0, 0),
            (height, width),
            dtype=prompt_embeds.dtype,
            text_encoder_projection_dim=text_encoder_projection_dim,
        )
        # Proprocess the text embeddings
        added_cond_kwargs = {
            "time_ids": add_time_ids.to(device=self.device),
            "text_embeds": pooled_prompt_embeds.to(device=self.device),
        }

        return added_cond_kwargs

    @torch.no_grad()
    def _model_forward_pass(
        self, 
        image, 
        prompt,
        timestep=49,
        guidance_scale=1.0,
        num_inference_steps=50,
        height=512,
        width=512,
        dtype=torch.float32,
        batch_size=1,
        generator=None,
    ):
        # Set up timesteps
        self.pipeline.scheduler.set_timesteps(num_inference_steps)
        ########################## Prepare latents ##########################
        init_image = self.pipeline.image_processor.preprocess(
            image, 
            height=height, 
            width=width, 
            # crops_coords=None, 
            # resize_mode="default"
        )
        init_image = init_image.to(dtype=torch.float32) # Make sure float 32 cause otherwise vae encoder doesnt work
        init_image = init_image.to(device=self.device)
        initial_image_latents = self._encode_image(init_image)
        # Figure out the number fo steps to do
        timestep = self.pipeline.scheduler.timesteps[timestep]
        # Encode the prompt
        prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = self._encode_prompt(
            prompt, 
            guidance_scale=guidance_scale, 
            device=self.device
        )
        # Proprocess the text embeddings
        added_cond_kwargs = self._process_added_kwargs(
            prompt_embeds, 
            pooled_prompt_embeds,
            width=width,
            height=height
        )
        # Add noise at the appropriate timescale
        noise = randn_tensor(initial_image_latents.shape, device=torch.device(self.device), dtype=dtype)
        noisy_latents = self.pipeline.scheduler.add_noise(initial_image_latents, noise, timestep.unsqueeze(0))
        noisy_latents = self.pipeline.scheduler.scale_model_input(noisy_latents, timestep)
        noisy_latents = noisy_latents.to(device=self.device, dtype=dtype)
        ########################## Run forward pass ##########################
        noise_pred = self.pipeline.unet(
            noisy_latents,
            timestep,
            encoder_hidden_states=prompt_embeds,
            timestep_cond=None,
            cross_attention_kwargs=None,
            added_cond_kwargs=added_cond_kwargs,
            return_dict=False,
        )[0]
        ########################## Get and save predicted image ##########################
        # # Manually do the logic for the scheduler to get the original prediction
        # s_churn = 0.0
        # s_tmin = 0.0
        # s_tmax = float("inf")
        # s_noise = 1.0
        # # Upcast to avoid precision issues when computing prev_sample
        # sample = noisy_latents.to(torch.float32)
        # sigma = self.pipeline.scheduler.sigmas[self.pipeline.scheduler.index_for_timestep(timestep)]
        # gamma = min(s_churn / (len(self.pipeline.scheduler.sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0
        # noise = randn_tensor(
        #     noise_pred.shape, dtype=noise_pred.dtype, device=noise_pred.device, generator=generator
        # )
        # eps = noise * s_noise
        # sigma_hat = sigma * (gamma + 1)
        # if gamma > 0:
        #     sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5
        # pred_original_sample = sample - sigma_hat * noise_pred
        # # For testing purposes get the predicted original latents and generate the image for it to verify that the image was encoded properly. 
        # image = self.pipeline.vae.decode(pred_original_sample / self.pipeline.vae.config.scaling_factor, return_dict=False, generator=generator)[0]
        # image = self.pipeline.image_processor.postprocess(image, output_type="pil", do_denormalize=[True for _ in range(batch_size)])

        return None

    def segment_individual_image(self, image: torch.Tensor, concepts: list[str], caption: str, num_samples=1, num_inference_steps=50, **kwargs):
        # Cocnat the concepts into the prompt
        modified_caption = caption+ "," + ", ".join([f"a {concept}" for concept in concepts])
        # Run the forward pass with daam trace wrapper
        concept_heatmaps = []
        if num_samples > 1:
            timesteps = [49 for _ in range(num_samples)]
            # timesteps = list(range(num_samples))
        else:
            timesteps = [49]

        all_heatmaps = []
        for timestep in timesteps:
            with trace(self.pipeline) as tc:
                _ = self._model_forward_pass(
                    image, 
                    modified_caption,
                    timestep=timestep,
                    guidance_scale=7.0,
                    num_inference_steps=num_inference_steps,
                    height=512,
                    width=512,
                    dtype=torch.float32,
                    batch_size=1,
                )
                print(f"Modified Caption: {modified_caption}")
                heat_map = tc.compute_global_heat_map(prompt=modified_caption)
                concept_heatmaps = []
                # For each concept make a heatmap
                for concept in concepts:
                    concept_heat_map = heat_map.compute_word_heat_map(concept).heatmap
                    concept_heatmaps.append(concept_heat_map)
                concept_heatmaps = torch.stack(concept_heatmaps, dim=0)
                all_heatmaps.append(concept_heatmaps)

        all_heatmaps = torch.stack(all_heatmaps, dim=0)
        all_heatmaps = all_heatmaps.mean(0)

        return all_heatmaps, None