Spaces:
Paused
Paused
File size: 30,247 Bytes
4279593 a6a6a62 4279593 a6a6a62 4279593 25f9610 4279593 25f9610 4279593 c3d9a20 4279593 2bab159 4279593 25f9610 4279593 25f9610 4279593 25f9610 4279593 25f9610 4279593 b2da7d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 |
import os
import re
import asyncio
import json
import time
import logging
from typing import Any, Dict
from fastapi.staticfiles import StaticFiles
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import StreamingResponse, JSONResponse, FileResponse
from fastapi.middleware.cors import CORSMiddleware
from dotenv import load_dotenv
from openai import RateLimitError
from anthropic import RateLimitError as AnthropicRateLimitError
from google.api_core.exceptions import ResourceExhausted
logger = logging.getLogger()
logger.setLevel(logging.INFO)
ENV_FILE_PATH = os.getenv("WRITABLE_DIR", "/tmp") + "/.env"
CONTEXT_LENGTH = 128000
BUFFER = 10000
MAX_TOKENS_ALLOWED = CONTEXT_LENGTH - BUFFER
# Per-session state
SESSION_STORE: Dict[str, Dict[str, Any]] = {}
# Format error message for SSE
def format_error_sse(event_type: str, data: str) -> str:
lines = data.splitlines()
sse_message = f"event: {event_type}\n"
for line in lines:
sse_message += f"data: {line}\n"
sse_message += "\n"
return sse_message
# Initialize the components
def initialize_components():
load_dotenv(ENV_FILE_PATH, override=True)
from src.search.search_engine import SearchEngine
from src.query_processing.query_processor import QueryProcessor
from src.rag.graph_rag import GraphRAG
from src.evaluation.evaluator import Evaluator
from src.reasoning.reasoner import Reasoner
from src.crawl.crawler import CustomCrawler
from src.utils.api_key_manager import APIKeyManager
from src.query_processing.late_chunking.late_chunker import LateChunker
manager = APIKeyManager()
manager._reinit()
SESSION_STORE['search_engine'] = SearchEngine()
SESSION_STORE['query_processor'] = QueryProcessor()
SESSION_STORE['crawler'] = CustomCrawler(max_concurrent_requests=1000)
SESSION_STORE['graph_rag'] = GraphRAG(num_workers=os.cpu_count() * 2)
SESSION_STORE['evaluator'] = Evaluator()
SESSION_STORE['reasoner'] = Reasoner()
SESSION_STORE['model'] = manager.get_llm()
SESSION_STORE['late_chunker'] = LateChunker()
SESSION_STORE["initialized"] = True
SESSION_STORE["session_id"] = None
async def process_query(user_query: str, sse_queue: asyncio.Queue):
state = SESSION_STORE
try:
category = await state["query_processor"].classify_query(user_query)
cat_lower = category.lower().strip()
if state["session_id"] is None:
state["session_id"] = await state["crawler"].create_session()
user_query = re.sub(r'category:.*', '', user_query, flags=re.IGNORECASE).strip()
if cat_lower == "internal knowledge base":
response = ""
async for chunk in state["reasoner"].reason(user_query):
response += chunk
await sse_queue.put(("token", chunk))
await sse_queue.put(("final_message", response))
SESSION_STORE["chat_history"].append({"query": user_query, "response": response})
await sse_queue.put(("action", {
"name": "evaluate",
"payload": {"query": user_query, "response": response}
}))
await sse_queue.put(("complete", "done"))
elif cat_lower == "simple external lookup":
await sse_queue.put(("step", "Searching..."))
optimized_query = await state['search_engine'].generate_optimized_query(user_query)
search_results = await state['search_engine'].search(
optimized_query,
num_results=3,
exclude_filetypes=["pdf"]
)
urls = [r.get('link', 'No URL') for r in search_results]
search_contents = await state['crawler'].fetch_page_contents(
urls,
user_query,
state["session_id"],
max_attempts=1
)
contents = ""
if search_contents:
for k, content in enumerate(search_contents, 1):
if isinstance(content, Exception):
print(f"Error fetching content: {content}")
elif content:
contents += f"Document {k}:\n{content}\n\n"
if len(contents.strip()) > 0:
await sse_queue.put(("step", "Generating Response..."))
token_count = state['model'].get_num_tokens(contents)
if token_count > MAX_TOKENS_ALLOWED:
contents = await state['late_chunker'].chunker(contents, user_query, MAX_TOKENS_ALLOWED)
await sse_queue.put(("sources_read", len(search_contents)))
response = ""
async for chunk in state["reasoner"].reason(user_query, contents):
response += chunk
await sse_queue.put(("token", chunk))
await sse_queue.put(("final_message", response))
SESSION_STORE["chat_history"].append({"query": user_query, "response": response})
await sse_queue.put(("action", {
"name": "sources",
"payload": {"search_results": search_results, "search_contents": search_contents}
}))
await sse_queue.put(("action", {
"name": "evaluate",
"payload": {"query": user_query, "contents": [contents], "response": response}
}))
await sse_queue.put(("complete", "done"))
else:
await sse_queue.put(("error", "No results found."))
elif cat_lower == "complex moderate decomposition":
current_search_results = []
current_search_contents = []
await sse_queue.put(("step", "Thinking..."))
start = time.time()
intent = await state['query_processor'].get_query_intent(user_query)
sub_queries, _ = await state['query_processor'].decompose_query(user_query, intent)
async def sub_query_task(sub_query):
try:
await sse_queue.put(("step", "Searching..."))
await sse_queue.put(("task", (sub_query, "RUNNING")))
optimized_query = await state['search_engine'].generate_optimized_query(sub_query)
search_results = await state['search_engine'].search(
optimized_query,
num_results=10,
exclude_filetypes=["pdf"]
)
filtered_urls = await state['search_engine'].filter_urls(
sub_query,
category,
search_results
)
current_search_results.extend(filtered_urls)
urls = [r.get('link', 'No URL') for r in filtered_urls]
search_contents = await state['crawler'].fetch_page_contents(
urls,
sub_query,
state["session_id"],
max_attempts=1
)
current_search_contents.extend(search_contents)
contents = ""
if search_contents:
for k, c in enumerate(search_contents, 1):
if isinstance(c, Exception):
logger.info(f"Error fetching content: {c}")
elif c:
contents += f"Document {k}:\n{c}\n\n"
if len(contents.strip()) > 0:
await sse_queue.put(("task", (sub_query, "DONE")))
else:
await sse_queue.put(("task", (sub_query, "FAILED")))
return contents
except (RateLimitError, ResourceExhausted, AnthropicRateLimitError):
await sse_queue.put(("task", (sub_query, "FAILED")))
return ""
tasks = [sub_query_task(sub_query) for sub_query in sub_queries]
results = await asyncio.gather(*tasks)
end = time.time()
contents = "\n\n".join(r for r in results if r.strip())
unique_results = []
seen = set()
for entry in current_search_results:
link = entry["link"]
if link not in seen:
seen.add(link)
unique_results.append(entry)
current_search_results = unique_results
current_search_contents = list(set(current_search_contents))
if len(contents.strip()) > 0:
await sse_queue.put(("step", "Generating Response..."))
token_count = state['model'].get_num_tokens(contents)
if token_count > MAX_TOKENS_ALLOWED:
contents = await state['late_chunker'].chunker(
text=contents,
query=user_query,
max_tokens=MAX_TOKENS_ALLOWED
)
logger.info(f"Number of tokens in the answer: {token_count}")
logger.info(f"Number of tokens in the content: {state['model'].get_num_tokens(contents)}")
await sse_queue.put(("sources_read", len(current_search_contents)))
response = ""
is_first_chunk = True
async for chunk in state['reasoner'].reason(user_query, contents):
if is_first_chunk:
await sse_queue.put(("step", f"Thought and searched for {int(end - start)} seconds"))
is_first_chunk = False
response += chunk
await sse_queue.put(("token", chunk))
await sse_queue.put(("final_message", response))
SESSION_STORE["chat_history"].append({"query": user_query, "response": response})
await sse_queue.put(("action", {
"name": "sources",
"payload": {
"search_results": current_search_results,
"search_contents": current_search_contents
}
}))
await sse_queue.put(("action", {
"name": "evaluate",
"payload": {"query": user_query, "contents": [contents], "response": response}
}))
await sse_queue.put(("complete", "done"))
else:
await sse_queue.put(("error", "No results found."))
elif cat_lower == "complex advanced decomposition":
current_search_results = []
current_search_contents = []
await sse_queue.put(("step", "Thinking..."))
start = time.time()
main_query_intent = await state['query_processor'].get_query_intent(user_query)
sub_queries, _ = await state['query_processor'].decompose_query(user_query, main_query_intent)
await sse_queue.put(("step", "Searching..."))
async def sub_query_task(sub_query):
try:
async def sub_sub_query_task(sub_sub_query):
optimized_query = await state['search_engine'].generate_optimized_query(sub_sub_query)
search_results = await state['search_engine'].search(
optimized_query,
num_results=10,
exclude_filetypes=["pdf"]
)
filtered_urls = await state['search_engine'].filter_urls(
sub_sub_query,
category,
search_results
)
current_search_results.extend(filtered_urls)
urls = [r.get('link', 'No URL') for r in filtered_urls]
search_contents = await state['crawler'].fetch_page_contents(
urls,
sub_sub_query,
state["session_id"],
max_attempts=1,
timeout=20
)
current_search_contents.extend(search_contents)
contents = ""
if search_contents:
for k, c in enumerate(search_contents, 1):
if isinstance(c, Exception):
logger.info(f"Error fetching content: {c}")
elif c:
contents += f"Document {k}:\n{c}\n\n"
return contents
await sse_queue.put(("task", (sub_query, "RUNNING")))
sub_sub_queries, _ = await state['query_processor'].decompose_query(sub_query)
tasks = [sub_sub_query_task(sub_sub_query) for sub_sub_query in sub_sub_queries]
results = await asyncio.gather(*tasks)
if any(result.strip() for result in results):
await sse_queue.put(("task", (sub_query, "DONE")))
else:
await sse_queue.put(("task", (sub_query, "FAILED")))
return results
except (RateLimitError, ResourceExhausted, AnthropicRateLimitError):
await sse_queue.put(("task", (sub_query, "FAILED")))
return []
tasks = [sub_query_task(sub_query) for sub_query in sub_queries]
results = await asyncio.gather(*tasks)
end = time.time()
previous_contents = []
for result in results:
if result:
for content in result:
if isinstance(content, str) and len(content.strip()) > 0:
previous_contents.append(content)
contents = "\n\n".join(previous_contents)
unique_results = []
seen = set()
for entry in current_search_results:
link = entry["link"]
if link not in seen:
seen.add(link)
unique_results.append(entry)
current_search_results = unique_results
current_search_contents = list(set(current_search_contents))
if len(contents.strip()) > 0:
await sse_queue.put(("step", "Generating Response..."))
token_count = state['model'].get_num_tokens(contents)
if token_count > MAX_TOKENS_ALLOWED:
contents = await state['late_chunker'].chunker(
text=contents,
query=user_query,
max_tokens=MAX_TOKENS_ALLOWED
)
logger.info(f"Number of tokens in the answer: {token_count}")
logger.info(f"Number of tokens in the content: {state['model'].get_num_tokens(contents)}")
await sse_queue.put(("sources_read", len(current_search_contents)))
response = ""
is_first_chunk = True
async for chunk in state['reasoner'].reason(user_query, contents):
if is_first_chunk:
await sse_queue.put(("step", f"Thought and searched for {int(end - start)} seconds"))
is_first_chunk = False
response += chunk
await sse_queue.put(("token", chunk))
await sse_queue.put(("final_message", response))
SESSION_STORE["chat_history"].append({"query": user_query, "response": response})
await sse_queue.put(("action", {
"name": "sources",
"payload": {
"search_results": current_search_results,
"search_contents": current_search_contents
}
}))
await sse_queue.put(("action", {
"name": "evaluate",
"payload": {"query": user_query, "contents": [contents], "response": response}
}))
await sse_queue.put(("complete", "done"))
else:
await sse_queue.put(("error", "No results found."))
elif cat_lower == "extensive research dynamic structuring":
current_search_results = []
current_search_contents = []
match = re.search(
r"^This is the previous context of the conversation:\s*.*?\s*Current Query:\s*(.*)$",
user_query,
flags=re.DOTALL | re.MULTILINE
)
if match:
user_query = match.group(1)
await sse_queue.put(("step", "Thinking..."))
await asyncio.sleep(0.01) # Sleep for a short time to allow the message to be sent
async def on_event_callback(event_type, data):
if event_type == "graph_operation":
if data["operation_type"] == "creating_new_graph":
await sse_queue.put(("step", "Creating New Graph..."))
elif data["operation_type"] == "modifying_existing_graph":
await sse_queue.put(("step", "Modifying Existing Graph..."))
elif data["operation_type"] == "loading_existing_graph":
await sse_queue.put(("step", "Loading Existing Graph..."))
elif event_type == "sub_query_created":
sub_query = data["sub_query"]
await sse_queue.put(("task", (sub_query, "RUNNING")))
elif event_type == "search_process_started":
await sse_queue.put(("step", "Searching..."))
elif event_type == "sub_query_processed":
sub_query = data["sub_query"]
await sse_queue.put(("task", (sub_query, "DONE")))
elif event_type == "sub_query_failed":
sub_query = data["sub_query"]
await sse_queue.put(("task", (sub_query, "FAILED")))
elif event_type == "search_results_filtered":
current_search_results.extend(data["filtered_urls"])
filtered_urls = data["filtered_urls"]
current_search_results.extend(filtered_urls)
elif event_type == "search_contents_fetched":
current_search_contents.extend(data["contents"])
contents = data["contents"]
current_search_contents.extend(contents)
elif event_type == "search_process_completed":
await sse_queue.put(("step", "Processing final graph tasks..."))
await asyncio.sleep(0.01) # Sleep for a short time to allow the message to be sent
state['graph_rag'].set_on_event_callback(on_event_callback)
start = time.time()
await state['graph_rag'].process_graph(
user_query,
similarity_threshold=0.8,
relevance_threshold=0.8,
max_tokens_allowed=MAX_TOKENS_ALLOWED
)
end = time.time()
unique_results = []
seen = set()
for entry in current_search_results:
link = entry["link"]
if link not in seen:
seen.add(link)
unique_results.append(entry)
current_search_results = unique_results
current_search_contents = list(set(current_search_contents))
await sse_queue.put(("step", "Generating Response..."))
answer = state['graph_rag'].query_graph(user_query)
if answer:
token_count = state['model'].get_num_tokens(answer)
if token_count > MAX_TOKENS_ALLOWED:
answer = await state['late_chunker'].chunker(
text=answer,
query=user_query,
max_tokens=MAX_TOKENS_ALLOWED
)
logger.info(f"Number of tokens in the answer: {token_count}")
logger.info(f"Number of tokens in the content: {state['model'].get_num_tokens(answer)}")
await sse_queue.put(("sources_read", len(current_search_contents)))
response = ""
is_first_chunk = True
async for chunk in state['reasoner'].reason(user_query, answer):
if is_first_chunk:
await sse_queue.put(("step", f"Thought and searched for {int(end - start)} seconds"))
is_first_chunk = False
response += chunk
await sse_queue.put(("token", chunk))
await sse_queue.put(("final_message", response))
SESSION_STORE["chat_history"].append({"query": user_query, "response": response})
await sse_queue.put(("action", {
"name": "sources",
"payload": {"search_results": current_search_results, "search_contents": current_search_contents},
}))
await sse_queue.put(("action", {
"name": "graph",
"payload": {"query": user_query},
}))
await sse_queue.put(("action", {
"name": "evaluate",
"payload": {"query": user_query, "contents": [answer], "response": response},
}))
await sse_queue.put(("complete", "done"))
else:
await sse_queue.put(("error", "No results found."))
else:
await sse_queue.put(("final_message", "I'm not sure how to handle your query."))
except Exception as e:
await sse_queue.put(("error", str(e)))
# Create a FastAPI app
app = FastAPI()
# Define allowed origins
origins = [
"http://localhost:3000",
"http://localhost:7860"
"http://localhost:8000",
"http://localhost"
]
# Add the CORS middleware to your FastAPI app
app.add_middleware(
CORSMiddleware,
allow_origins=origins, # Allows only these origins
allow_credentials=True,
allow_methods=["*"], # Allows all HTTP methods (GET, POST, etc.)
allow_headers=["*"], # Allows all headers
)
# Serve the React app (the production build) at the root URL.
app.mount("/static", StaticFiles(directory="frontend/build/static", html=True), name="static")
# Define the routes for the FastAPI app
# Define the route for sources action to display search results
@app.post("/action/sources")
def action_sources(payload: Dict[str, Any]) -> Dict[str, Any]:
try:
search_contents = payload.get("search_contents", [])
search_results = payload.get("search_results", [])
sources = []
word_limit = 15 # Maximum number of words for the description
for result, contents in zip(search_results, search_contents):
if contents:
title = result.get('title', 'No Title')
link = result.get('link', 'No URL')
snippet = result.get('snippet', 'No snippet')
cleaned = re.sub(r'<[^>]+>|\[\/?.*?\]', '', snippet)
words = cleaned.split()
if len(words) > word_limit:
description = " ".join(words[:word_limit]) + "..."
else:
description = " ".join(words)
source_obj = {
"title": title,
"link": link,
"description": description
}
sources.append(source_obj)
return {"result": sources}
except Exception as e:
return JSONResponse(content={"error": str(e)}, status_code=500)
# Define the route for graph action to display the graph
@app.post("/action/graph")
def action_graph() -> Dict[str, Any]:
state = SESSION_STORE
try:
html_str = state['graph_rag'].display_graph()
return {"result": html_str}
except Exception as e:
return JSONResponse(content={"error": str(e)}, status_code=500)
# Define the route for evaluate action to display evaluation results
@app.post("/action/evaluate")
async def action_evaluate(payload: Dict[str, Any]) -> Dict[str, Any]:
try:
query = payload.get("query", "")
contents = payload.get("contents", [])
response = payload.get("response", "")
metrics = payload.get("metrics", [])
state = SESSION_STORE
evaluator = state["evaluator"]
result = await evaluator.evaluate_response(query, response, contents, include_metrics=metrics)
return {"result": result}
except Exception as e:
return JSONResponse(content={"error": str(e)}, status_code=500)
@app.post("/settings")
async def update_settings(data: Dict[str, Any]):
from src.helpers.helper import (
prepare_provider_key_updates,
prepare_proxy_list_updates,
update_env_vars
)
provider = data.get("Model_Provider", "").strip()
model_name = data.get("Model_Name", "").strip()
multiple_api_keys = data.get("Model_API_Keys", "").strip()
brave_api_key = data.get("Brave_Search_API_Key", "").strip()
proxy_list = data.get("Proxy_List", "").strip()
# neo4j_url = data.get("Neo4j_URL", "").strip()
# neo4j_username = data.get("Neo4j_Username", "").strip()
# neo4j_password = data.get("Neo4j_Password", "").strip()
model_temperature = str(data.get("Model_Temperature", 0.0))
model_top_p = str(data.get("Model_Top_P", 1.0))
prov_lower = provider.lower()
key_updates = prepare_provider_key_updates(prov_lower, multiple_api_keys)
env_updates = {}
env_updates.update(key_updates)
px = prepare_proxy_list_updates(proxy_list)
if px:
env_updates.update(px)
env_updates["BRAVE_API_KEY"] = brave_api_key
# env_updates["NEO4J_URI"] = neo4j_url
# env_updates["NEO4J_USER"] = neo4j_username
# env_updates["NEO4J_PASSWORD"] = neo4j_password
env_updates["MODEL_PROVIDER"] = prov_lower
env_updates["MODEL_NAME"] = model_name
env_updates["MODEL_TEMPERATURE"] = model_temperature
env_updates["MODEL_TOP_P"] = model_top_p
update_env_vars(env_updates)
load_dotenv(override=True)
initialize_components()
return {"success": True}
@app.on_event("startup")
def init_chat():
if not SESSION_STORE:
print("Initializing chat...")
SESSION_STORE["settings_saved"] = False
SESSION_STORE["session_id"] = None
SESSION_STORE["chat_history"] = []
print("Chat initialized!")
return {"sucess": True}
else:
print("Chat already initialized!")
return {"success": False}
@app.get("/message-sse")
async def sse_message(request: Request, user_message: str):
state = SESSION_STORE
sse_queue = asyncio.Queue()
async def event_generator():
# Build the prompt
context = state["chat_history"][-5:]
if context:
prompt = \
f"""This is the previous context of the conversation:
{context}
Current Query:
{user_message}"""
else:
prompt = user_message
task = asyncio.create_task(process_query(prompt, sse_queue))
state["process_task"] = task
while True:
if await request.is_disconnected():
task.cancel()
break
try:
event_type, data = await asyncio.wait_for(sse_queue.get(), timeout=5)
if event_type == "token":
yield f"event: token\ndata: {data}\n\n"
elif event_type == "final_message":
yield f"event: final_message\ndata: {data}\n\n"
elif event_type == "error":
yield format_error_sse("error", data)
elif event_type == "step":
yield f"event: step\ndata: {data}\n\n"
elif event_type == "task":
subq, status = data
j = {"task": subq, "status": status}
yield f"event: task\ndata: {json.dumps(j)}\n\n"
elif event_type == "sources_read":
yield f"event: sources_read\ndata: {data}\n\n"
elif event_type == "action":
yield f"event: action\ndata: {json.dumps(data)}\n\n"
elif event_type == "complete":
yield f"event: complete\ndata: {data}\n\n"
break
else:
yield f"event: message\ndata: {data}\n\n"
except asyncio.TimeoutError:
if task.done():
break
continue
except asyncio.CancelledError:
break
if not task.done():
task.cancel()
if "process_task" in state:
del state["process_task"]
return StreamingResponse(event_generator(), media_type="text/event-stream")
@app.post("/stop")
def stop():
state = SESSION_STORE
if "process_task" in state:
state["process_task"].cancel()
del state["process_task"]
return {"message": "Stopped task manually"}
# Catch-all route for frontend paths.
@app.get("/{full_path:path}")
async def serve_frontend(full_path: str, request: Request):
index_path = os.path.join("frontend", "build", "index.html")
if not os.path.exists(index_path):
raise HTTPException(status_code=500, detail="Frontend build not found")
return FileResponse(index_path) |