File size: 69,072 Bytes
25f9610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85f093d
c3d9a20
 
 
25f9610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3d9a20
 
 
25f9610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3d9a20
 
 
 
25f9610
c3d9a20
 
25f9610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3d9a20
25f9610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3d9a20
 
85f093d
 
 
 
25f9610
 
c3d9a20
 
 
25f9610
c3d9a20
25f9610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3d9a20
85f093d
 
 
25f9610
 
 
c3d9a20
85f093d
 
 
 
25f9610
 
 
 
c3d9a20
25f9610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3d9a20
 
 
 
 
 
 
 
 
25f9610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3d9a20
25f9610
 
 
 
 
 
 
 
 
 
 
 
 
 
ace1787
 
 
 
 
 
 
 
 
 
 
25f9610
 
 
c3d9a20
25f9610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3d9a20
 
 
 
 
25f9610
 
 
 
 
 
 
 
85f093d
 
 
25f9610
c3d9a20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85f093d
c3d9a20
 
 
 
 
 
 
 
 
 
 
85f093d
c3d9a20
 
 
25f9610
c3d9a20
85f093d
 
 
 
 
c3d9a20
85f093d
 
c3d9a20
85f093d
 
 
 
c3d9a20
25f9610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85f093d
c3d9a20
25f9610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3d9a20
25f9610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
981afc2
 
 
23c4573
25f9610
23c4573
25f9610
981afc2
23c4573
981afc2
85f093d
25f9610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
import os
import gc
import time
import asyncio
import torch
import uuid
import rustworkx as rx
import numpy as np
from concurrent.futures import ThreadPoolExecutor
from typing import List, Dict, Any
from pyvis.network import Network   
from src.query_processing.late_chunking.late_chunker import LateChunker
from src.query_processing.query_processor import QueryProcessor
from src.reasoning.reasoner import Reasoner
from src.utils.api_key_manager import APIKeyManager
from src.search.search_engine import SearchEngine
from src.crawl.crawler import CustomCrawler #, Crawler
from sentence_transformers import SentenceTransformer
from bert_score.scorer import BERTScorer
from tenacity import RetryError
from openai import RateLimitError
from anthropic import RateLimitError as AnthropicRateLimitError
from google.api_core.exceptions import ResourceExhausted

class GraphRAG:
    def __init__(self, num_workers: int = 1):
        """Initialize graph and required components."""
        # Dictionary to store multiple graphs
        self.graphs = {}
        self.current_graph_id = None

        # Component initialization
        self.num_workers = num_workers
        self.search_engine = SearchEngine()
        self.query_processor = QueryProcessor()
        self.reasoner = Reasoner()
        # self.crawler = Crawler(verbose=True)
        self.custom_crawler = CustomCrawler(max_concurrent_requests=1000)
        self.chunking = LateChunker()
        self.llm = APIKeyManager().get_llm()

        # Model initialization
        self.model = SentenceTransformer(
            "dunzhang/stella_en_400M_v5",
            trust_remote_code=True,
            device="cuda" if torch.cuda.is_available() else "cpu"
        )
        self.scorer = BERTScorer(
            model_type="roberta-base",
            lang="en",
            rescale_with_baseline=True,
            device="cuda" if torch.cuda.is_available() else "cpu"
        )
        
        # Counters and tracking
        self.root_node_id = "QR"
        self.node_counter = 0
        self.sub_node_counter = 0
        self.cross_connections = set()

        # Semaphore protection
        self.semaphore = asyncio.Semaphore(min(num_workers * 2, 12))

        # Thread pool
        self.executor = ThreadPoolExecutor(max_workers=self.num_workers)

        # Event callback
        self.on_event_callback = None

    def set_on_event_callback(self, callback):
        """Register a single callback to be triggered for various event types."""
        self.on_event_callback = callback

    async def emit_event(self, event_type: str, data: dict):
        """Helper method to safely emit an event if a callback is registered."""
        if self.on_event_callback:
            if asyncio.iscoroutinefunction(self.on_event_callback):
                return await self.on_event_callback(event_type, data)
            else:
                return self.on_event_callback(event_type, data)

    def _get_current_graph_data(self):
        if self.current_graph_id is None or self.current_graph_id not in self.graphs:
            raise Exception("Error: No current graph selected")
        
        return self.graphs[self.current_graph_id]

    def add_node(self, node_id: str, query: str, data: str = "", role: str = None):
        """Add a node to the current graph."""
        graph_data = self._get_current_graph_data()
        graph = graph_data["graph"]
        node_map = graph_data["node_map"]

        # Generate embedding
        embedding = self.model.encode(query).tolist()
        node_data = {
            "id": node_id,
            "query": query,
            "data": data,
            "role": role,
            "embedding": embedding,
            "pagerank": 0,
            "graph_id": self.current_graph_id
        }
        node_index = graph.add_node(node_data)
        node_map[node_id] = node_index

        print(f"Added node '{node_id}' to graph '{self.current_graph_id}' with role '{role}' and query: '{query}'")

    def _has_path(self, source_idx: int, target_idx: int) -> bool:
        """Helper method to check if there is a path from source to target in the current graph."""
        graph_data = self._get_current_graph_data()
        graph = graph_data["graph"]
        visited = set()
        stack = [source_idx]

        while stack:
            current = stack.pop()

            if current == target_idx:
                return True
            
            if current in visited:
                continue

            visited.add(current)
            for neighbor in graph.neighbors(current):
                stack.append(neighbor)

        return False

    def add_edge(self, node1: str, node2: str, weight: float = 1.0, relationship_type: str = None):
        """Add an edge between two nodes in a way that preserves a DAG structure."""
        if self.current_graph_id is None:
            raise Exception("Error: No current graph selected")
        
        if node1 == node2:
            print(f"Cannot add edge to the same node {node1}!")
            return
        
        graph_data = self._get_current_graph_data()
        graph = graph_data["graph"]
        node_map = graph_data["node_map"]

        if node1 not in node_map or node2 not in node_map:
            print(f"One or both nodes {node1}, {node2} do not exist in the current graph.")
            return
        
        idx1 = node_map[node1]
        idx2 = node_map[node2]

        # Check if adding this edge would create a cycle (i.e. if there is a path from node2 to node1)
        if self._has_path(idx2, idx1):
            print(f"An edge between {node1} -> {node2} already exists or would create a cycle!")
            return
        
        if relationship_type and weight:
            edge_data = {"type": relationship_type, "weight": weight}
            graph.add_edge(idx1, idx2, edge_data)
        else:
            raise ValueError("Error: Relationship type and weight must be provided")
        print(f"Added edge between '{node1}' and '{node2}' in graph '{self.current_graph_id}' (type='{relationship_type}', weight={weight})")

    def edge_exists(self, node1: str, node2: str) -> bool:
        """Check if an edge exists between two nodes."""
        graph_data = self._get_current_graph_data()
        graph = graph_data["graph"]
        node_map = graph_data["node_map"]

        if node1 not in node_map or node2 not in node_map:
            return False
        idx1 = node_map[node1]
        idx2 = node_map[node2]

        for edge in graph.out_edges(idx1):
            if edge[1] == idx2:
                return True
            
        return False

    def graph_exists(self) -> bool:
        """Check if a graph exists."""
        return self.current_graph_id is not None and self.current_graph_id in self.graphs and len(self.graphs[self.current_graph_id]["node_map"]) > 0

    def get_graphs(self) -> list:
        """Get detailed information about all existing graphs and their nodes."""
        result = []
        for graph_id, data in self.graphs.items():
            metadata = data["metadata"]
            node_map = data["node_map"]
            graph = data["graph"]
            nodes_info = []

            for node_id, idx in node_map.items():
                node_data = graph.get_node_data(idx)
                nodes_info.append({
                    "id": node_data.get("id"),
                    "query": node_data.get("query"),
                    "data": node_data.get("data"),
                    "role": node_data.get("role"),
                    "pagerank": node_data.get("pagerank")
                })
            edge_count = len(graph.edge_list())
            result.append({
                "graph_info": {
                    "graph_id": graph_id,
                    "created": metadata.get("created"),
                    "updated": metadata.get("updated"),
                    "node_count": len(node_map),
                    "edge_count": edge_count,
                    "nodes": nodes_info
                }
            })

        result.sort(key=lambda x: x["graph_info"]["created"], reverse=True)
        return result

    def select_graph(self, graph_id: str) -> bool:
        """Select a specific graph as the current working graph."""
        if graph_id in self.graphs:
            self.current_graph_id = graph_id
            return True
        return False

    def create_new_graph(self) -> str:
        """Create a new graph instance and its ID."""
        graph_id = str(uuid.uuid4())
        graph = rx.PyDiGraph()
        node_map = {}
        metadata = {
            "id": graph_id,
            "created": time.time(),
            "updated": time.time()
        }
        self.graphs[graph_id] = {"graph": graph, "node_map": node_map, "metadata": metadata}
        self.current_graph_id = graph_id

        return graph_id

    def load_graph(self, node_id: str) -> bool:
        """Load an existing graph structure from memory based on a node ID."""

        for gid, data in self.graphs.items():
            if node_id in data["node_map"]:
                self.current_graph_id = gid

                for n_id in data["node_map"].keys():
                    if "SQ" in n_id:
                        num = int(''.join(filter(str.isdigit, n_id)) or 0)
                        self.node_counter = max(self.node_counter, num)
                    elif "SSQ" in n_id:
                        num = int(''.join(filter(str.isdigit, n_id)) or 0)
                        self.sub_node_counter = max(self.sub_node_counter, num)

                self.node_counter += 1
                self.sub_node_counter += 1
                graph = data["graph"]
                node_map = data["node_map"]

                for (u, v), edge_data in zip(graph.edge_list(), graph.edges()):
                    if edge_data.get("type") == "logical":
                        source_id = graph.get_node_data(u).get("id")
                        target_id = graph.get_node_data(v).get("id")
                        connection = tuple(sorted([source_id, target_id]))
                        self.cross_connections.add(connection)

                print(f"Successfully loaded graph. Current counters - Node: {self.node_counter}, Sub: {self.sub_node_counter}")
                return True
            
        print(f"Graph with node_id {node_id} not found.")

        return False

    async def modify_graph(self, new_query: str, similar_node_id: str, session_id: str = None):
        """Modify an existing graph structure by integrating a new query."""
        graph_data = self._get_current_graph_data()
        graph = graph_data["graph"]
        node_map = graph_data["node_map"]

        async def add_as_sibling(node_id: str, query: str):
            if node_id not in node_map:
                raise ValueError(f"Node {node_id} not found")
            
            idx = node_map[node_id]
            in_edges = graph.in_edges(idx)

            if not in_edges:
                raise ValueError(f"No parent found for node {node_id}")
            
            parent_idx = in_edges[0][0]
            parent_data = graph.get_node_data(parent_idx)
            parent_id = parent_data.get("id")

            if "SQ" in node_id:
                self.node_counter += 1
                new_node_id = f"SQ{self.node_counter}"
            else:
                self.sub_node_counter += 1
                new_node_id = f"SSQ{self.sub_node_counter}"

            self.add_node(new_node_id, query, role="independent")
            self.add_edge(parent_id, new_node_id, relationship_type=in_edges[0][2].get("type"))

            return new_node_id

        async def add_as_child(node_id: str, query: str):
            if "SQ" in node_id:
                self.sub_node_counter += 1
                new_node_id = f"SSQ{self.sub_node_counter}"
            else:
                self.node_counter += 1
                new_node_id = f"SQ{self.node_counter}"

            self.add_node(new_node_id, query, role="dependent")
            self.add_edge(node_id, new_node_id, relationship_type="logical")

            return new_node_id

        def collect_graph_context() -> list:
            """Collect context from existing graph nodes."""
            graph_data = self._get_current_graph_data()
            graph = graph_data["graph"]
            node_map = graph_data["node_map"]
            nodes = []

            for n_id, idx in node_map.items():
                if n_id == self.root_node_id:
                    continue
                node_data = graph.get_node_data(idx)
                nodes.append({
                    "id": node_data.get("id"),
                    "query": node_data.get("query"),
                    "role": node_data.get("role")
                })

            nodes.sort(key=lambda x: (0 if x["id"].startswith("SQ") else (1 if x["id"].startswith("SSQ") else 2), x["id"]))
            level_queries = {}
            current_sq = None

            for node in nodes:
                node_id = node["id"]
                if node_id.startswith("SQ"):
                    current_sq = node_id

                    if current_sq not in level_queries:
                        level_queries[current_sq] = {
                            "originalquery": node["query"],
                            "subqueries": []
                        }
                    level_queries[current_sq]["subqueries"].append({
                        "subquery": node["query"],
                        "role": node["role"],
                        "dependson": []
                    })

                elif node_id.startswith("SSQ") and current_sq:
                    level_queries[current_sq]["subqueries"].append({
                        "subquery": node["query"],
                        "role": node["role"],
                        "dependson": []
                    })

            return list(level_queries.values())

        if similar_node_id not in node_map:
            raise Exception(f"Node {similar_node_id} not found")
        
        similar_node_data = graph.get_node_data(node_map[similar_node_id])
        has_parent = len(graph.in_edges(node_map[similar_node_id])) > 0

        context = collect_graph_context()
        if similar_node_data.get("role") == "independent":
            if has_parent:
                new_node_id = await add_as_sibling(similar_node_id, new_query)
            else:
                new_node_id = await add_as_child(similar_node_id, new_query)
        else:
            new_node_id = await add_as_child(similar_node_id, new_query)

        await self.build_graph(
            query=new_query,
            parent_node_id=new_node_id,
            depth=1 if "SQ" in new_node_id else 2,
            context=context,
            session_id=session_id
        )

    async def build_graph(self, query: str, data: str = None, parent_node_id: str = None, 
                    depth: int = 0, threshold: float = 0.8, recurse: bool = True, 
                    context: list = None, session_id: str = None, max_tokens_allowed: int = 128000,
                    node_data_futures: dict = None, sub_nodes_info: list = None, 
                    sub_query_ids: list = None, pre_req_nodes: list = None):
        """Build a new graph structure in memory."""
        async def process_node(node_id: str, sub_query: str, session_id: str, 
                               future: asyncio.Future, max_tokens_allowed: int = max_tokens_allowed):
            try:
                optimized_query = await self.search_engine.generate_optimized_query(sub_query)
                results = await self.search_engine.search(
                    query=optimized_query,
                    num_results=10,
                    exclude_filetypes=["pdf"]
                )
                await self.emit_event("search_results_fetched", {
                    "node_id": node_id,
                    "sub_query": sub_query,
                    "optimized_query": optimized_query,
                    "search_results": results
                })
                filtered_urls = await self.search_engine.filter_urls(
                    sub_query,
                    "extensive research dynamic structure",
                    results
                )
                await self.emit_event("search_results_filtered", {
                    "node_id": node_id,
                    "sub_query": sub_query,
                    "filtered_urls": filtered_urls
                })
                urls = [result.get('link', 'No URL') for result in filtered_urls]
                search_contents = await self.custom_crawler.fetch_page_contents(
                    urls,
                    sub_query,
                    session_id=session_id,
                    max_attempts=1,
                    timeout=30
                )
                await self.emit_event("search_contents_fetched", {
                    "node_id": node_id,
                    "sub_query": sub_query,
                    "contents": search_contents
                })

                contents = ""
                for k, content in enumerate(search_contents, 1):
                    if isinstance(content, Exception):
                        print(f"Error fetching content: {content}")
                    elif content:
                        contents += f"Document {k}:\n{content}\n\n"

                if contents.strip():                    
                    token_count = self.llm.get_num_tokens(contents)
                    if token_count > max_tokens_allowed:
                        contents = await self.chunking.chunker(
                            text=contents,
                            query=sub_query,
                            max_tokens=max_tokens_allowed
                        )
                        print(f"Number of tokens in the answer: {token_count}")
                        print(f"Number of tokens in the content: {self.llm.get_num_tokens(contents)}")

                graph_data = self._get_current_graph_data()
                graph = graph_data["graph"]
                node_map = graph_data["node_map"]

                if node_id in node_map:
                    idx = node_map[node_id]
                    node_data = graph.get_node_data(idx)
                    node_data["data"] = contents
                if not future.done():
                    future.set_result(contents)
            except (RateLimitError, ResourceExhausted, AnthropicRateLimitError, RetryError) as e:
                    print(f"Error processing node {node_id}: {str(e)}")
                    if not future.done():
                        future.set_exception(e)
            except Exception as e:
                print(f"Error processing node {node_id}: {str(e)}")
                if not future.done():
                    future.set_exception(e)
                raise e

        async def process_dependent_node(node_id: str, sub_query: str, dep_futures: list, future):
            try:
                dep_data = [await f for f in dep_futures]
                modified_query = await self.query_processor.modify_query(
                    sub_query,
                    dep_data
                )
                loop = asyncio.get_running_loop()
                embedding = await loop.run_in_executor(
                    self.executor,
                    self.model.encode,
                    modified_query
                )
                graph_data = self._get_current_graph_data()
                graph = graph_data["graph"]
                node_map = graph_data["node_map"]

                if node_id in node_map:
                    idx = node_map[node_id]
                    node_data = graph.get_node_data(idx)
                    node_data["query"] = modified_query
                    node_data["embedding"] = embedding.tolist() if hasattr(embedding, "tolist") else embedding
                try:
                    if not future.done():
                        await process_node(node_id, modified_query, session_id, future, max_tokens_allowed)
                except (RateLimitError, ResourceExhausted, AnthropicRateLimitError, RetryError) as e:
                    if not future.done():
                        future.set_exception(e)
                except Exception as e:
                    if not future.done():
                        future.set_exception(e)
                    raise e
            except (RateLimitError, ResourceExhausted, AnthropicRateLimitError, RetryError) as e:
                    print(f"Error processing dependent node {node_id}: {str(e)}")
                    if not future.done():
                        future.set_exception(e)
            except Exception as e:
                print(f"Error processing dependent node {node_id}: {str(e)}")
                if not future.done():
                    future.set_exception(e)
                raise e

        def create_cross_connections():
            try:
                relationships = self.get_node_relationships(relationship_type='logical')

                for current_node_id, edges in relationships.items():
                    graph_data = self._get_current_graph_data()
                    graph = graph_data["graph"]
                    node_map = graph_data["node_map"]

                    if current_node_id not in node_map:
                        continue

                    idx = node_map[current_node_id]
                    node_data = graph.get_node_data(idx)
                    node_role = (node_data.get("role") or "").lower()

                    if node_role == 'dependent':
                        for source_id, target_id, edge_data in edges['in_edges']:
                            if not source_id or source_id == self.root_node_id:
                                continue

                            connection = tuple(sorted([current_node_id, source_id]))
                            if connection not in self.cross_connections:
                                if not self.edge_exists(source_id, current_node_id):
                                    print(f"Adding cross-connection edge between {source_id} and {current_node_id}")
                                    self.add_edge(source_id, current_node_id, weight=edge_data.get('weight', 1.0), relationship_type='logical')
                                    self.cross_connections.add(connection)

                        for source_id, target_id, edge_data in edges['out_edges']:
                            if not target_id or target_id == self.root_node_id:
                                continue

                            connection = tuple(sorted([current_node_id, target_id]))
                            if connection not in self.cross_connections:
                                if not self.edge_exists(current_node_id, target_id):
                                    print(f"Adding cross-connection edge between {current_node_id} and {target_id}")
                                    self.add_edge(current_node_id, target_id, weight=edge_data.get('weight', 1.0), relationship_type='logical')
                                    self.cross_connections.add(connection)                               
            except Exception as e:
                print(f"Error creating cross connections: {str(e)}")
                raise

        if depth > 1:
            return
        
        if context is None:
            context = []

        if node_data_futures is None:
            node_data_futures = {}
        if sub_nodes_info is None:
            sub_nodes_info = []
        if sub_query_ids is None:
            sub_query_ids = []
        if pre_req_nodes is None:
            pre_req_nodes = {}

        if parent_node_id is None:
            self.add_node(self.root_node_id, query, data)
            parent_node_id = self.root_node_id
            
        intent = await self.query_processor.get_query_intent(query)

        if depth == 0:
            response_data, sub_queries, roles, dependencies = await self.query_processor.decompose_query_with_dependencies(query, intent)
        else:
            response_data, sub_queries, roles, dependencies = await self.query_processor.decompose_query_with_dependencies(query, intent, context)

        if response_data:
            context.append(response_data)

        if len(sub_queries) > 1 and sub_queries[0] != query:
            for idx, (sub_query, role, dependency) in enumerate(zip(sub_queries, roles, dependencies)):
                if depth == 0:
                    await self.emit_event("sub_query_created", {
                        "depth": depth,
                        "sub_query": sub_query,
                        "role": role,
                        "dependency": dependency,
                        "parent_node_id": parent_node_id,
                    })

                if depth == 0:
                    self.node_counter += 1
                    sub_node_id = f"SQ{self.node_counter}"
                else:
                    self.sub_node_counter += 1
                    sub_node_id = f"SSQ{self.sub_node_counter}"

                sub_query_ids.append(sub_node_id)
                self.add_node(sub_node_id, sub_query, role=role)
                future = asyncio.Future()
                node_data_futures[sub_node_id] = future
                sub_nodes_info.append((sub_node_id, sub_query, role, dependency, future, depth))

                if role.lower() in ['pre-requisite', 'prerequisite']:
                    pre_req_nodes[idx] = sub_node_id

                if role.lower() in ('pre-requisite', 'prerequisite', 'independent'):
                    self.add_edge(parent_node_id, sub_node_id, relationship_type='hierarchical')
                elif role.lower() == 'dependent':
                    if isinstance(dependency, list) and (len(dependency) == 2 and all(isinstance(d, list) for d in dependency)):
                        print(f"Dependency: {dependency}")
                        prev_deps, current_deps = dependency

                        if context and prev_deps not in [None, []]:
                            for dep_idx in prev_deps:
                                if dep_idx is not None:
                                    for context_data in context:
                                        if 'subqueries' in context_data and dep_idx < len(context_data['subqueries']):
                                            sub_query_data = context_data['subqueries'][dep_idx]
                                            if isinstance(sub_query_data, dict) and 'subquery' in sub_query_data:
                                                dep_query = sub_query_data['subquery']
                                                matching_nodes = self.find_nodes_by_properties(query=dep_query)
                                                if matching_nodes:
                                                    dep_node_id = matching_nodes[0].get('node_id')
                                                    score = matching_nodes[0].get('score', 0)
                                                    if score >= 0.9:
                                                        self.add_edge(dep_node_id, sub_node_id, relationship_type='logical')

                        if current_deps not in [None, []]:
                            for dep_idx in current_deps:
                                if dep_idx < len(sub_query_ids):
                                    dep_node_id = sub_query_ids[dep_idx]
                                    self.add_edge(dep_node_id, sub_node_id, relationship_type='logical')
                                else:
                                    raise ValueError(f"Invalid dependency index: {dep_idx}")
                    elif len(dependency) > 0:
                        for dep_idx in dependency:
                            if dep_idx < len(sub_queries):
                                dep_node_id = sub_query_ids[dep_idx]
                                self.add_edge(dep_node_id, sub_node_id, relationship_type='logical')
                            else:
                                raise ValueError(f"Invalid dependency index: {dep_idx}")
                    else:
                        raise ValueError(f"Invalid dependency: {dependency}")
                else:
                    raise ValueError(f"Unexpected role: {role}")

            if recurse:
                recursion_tasks = []

                for idx, sub_query in enumerate(sub_queries):
                    try:
                        sub_node_id = sub_query_ids[idx]
                        recursion_tasks.append(
                            self.build_graph(
                                query=sub_query,
                                parent_node_id=sub_node_id,
                                depth=depth + 1,
                                threshold=threshold,
                                recurse=recurse,
                                context=context,
                                session_id=session_id,
                                node_data_futures=node_data_futures,
                                sub_nodes_info=sub_nodes_info,
                                sub_query_ids=sub_query_ids,
                                pre_req_nodes=pre_req_nodes
                            )
                        )
                    except Exception as e:
                        print(f"Failed to create recursion task for sub-query {sub_query}: {e}")
                        continue

                if recursion_tasks:
                    try:
                        await asyncio.gather(*recursion_tasks, return_exceptions=True)
                    except (RateLimitError, ResourceExhausted, AnthropicRateLimitError, RetryError) as e:
                        print(f"Error during recursive processing: {e}")
                    except Exception as e:
                        print(f"Error during recursive processing: {e}")
                        raise e

            futures = {}
            all_child_futures = {}
            process_tasks = []
            graph_data = self._get_current_graph_data()
            graph = graph_data["graph"]
            node_map = graph_data["node_map"]

            for (sub_node_id, sub_query, role, dependency, future, local_depth) in sub_nodes_info:
                idx = node_map.get(sub_node_id)
                has_children = False
                child_futures = []
                if idx is not None:
                    for (_, child_idx, edge_data) in graph.out_edges(idx):
                        if edge_data.get("type") == "hierarchical":
                            has_children = True
                            child_future = node_data_futures.get(graph.get_node_data(child_idx).get("id"))
                            if child_future:
                                child_futures.append(child_future)
                if local_depth == 0:
                    futures[sub_query] = future
                    all_child_futures[sub_query] = child_futures
                    if has_children:
                        if not future.done():
                            future.set_result("")
                    else:
                        if role.lower() in ('pre-requisite', 'prerequisite', 'independent'):
                            process_tasks.append(process_node(sub_node_id, sub_query, session_id, future, max_tokens_allowed))
                        elif role.lower() == 'dependent':
                            dep_futures = []
                            if isinstance(dependency, list) and len(dependency) == 2:
                                prev_deps, current_deps = dependency
                                if context and prev_deps not in [None, []]:
                                    for context_idx, context_data in enumerate(context):
                                        if isinstance(prev_deps, list) and context_idx < len(prev_deps):
                                            context_dep = prev_deps[context_idx]
                                            if (context_dep is not None and isinstance(context_data, dict)
                                                    and 'subqueries' in context_data):
                                                if context_dep < len(context_data['subqueries']):
                                                    dep_query = context_data['subqueries'][context_dep]['subquery']
                                                    matching_nodes = self.find_nodes_by_properties(query=dep_query)
                                                    if matching_nodes not in [None, []]:
                                                        dep_node_id = matching_nodes[0].get('node_id', None)
                                                        score = float(matching_nodes[0].get('score', 0))
                                                        if score == 1.0 and dep_node_id in node_data_futures:
                                                            dep_futures.append(node_data_futures[dep_node_id])
                                        elif isinstance(prev_deps, int):
                                            if context_idx < len(context_data['subqueries']):
                                                dep_query = context_data['subqueries'][prev_deps]['subquery']
                                                matching_nodes = self.find_nodes_by_properties(query=dep_query)
                                                if matching_nodes not in [None, []]:
                                                    dep_node_id = matching_nodes[0].get('node_id', None)
                                                    score = matching_nodes[0].get('score', 0)
                                                    if score == 1.0 and dep_node_id in node_data_futures:
                                                        dep_futures.append(node_data_futures[dep_node_id])
                                if current_deps not in [None, []]:
                                    current_deps_list = [current_deps] if isinstance(current_deps, int) else current_deps
                                    for dep_idx in current_deps_list:
                                        if dep_idx < len(sub_query_ids):
                                            dep_node_id = sub_query_ids[dep_idx]
                                            if dep_node_id in node_data_futures:
                                                dep_futures.append(node_data_futures[dep_node_id])
                            process_tasks.append(process_dependent_node(sub_node_id, sub_query, dep_futures, future))
                else:
                    if role.lower() in ('pre-requisite', 'prerequisite', 'independent'):
                        process_tasks.append(process_node(sub_node_id, sub_query, session_id, future, max_tokens_allowed))
                    elif role.lower() == 'dependent':
                        dep_futures = []
                        if isinstance(dependency, list) and len(dependency) == 2:
                            prev_deps, current_deps = dependency
                            if context and prev_deps not in [None, []]:
                                for context_idx, context_data in enumerate(context):
                                    if isinstance(prev_deps, list) and context_idx < len(prev_deps):
                                        context_dep = prev_deps[context_idx]
                                        if (context_dep is not None and isinstance(context_data, dict)
                                                and 'subqueries' in context_data):
                                            if context_dep < len(context_data['subqueries']):
                                                dep_query = context_data['subqueries'][context_dep]['subquery']
                                                matching_nodes = self.find_nodes_by_properties(query=dep_query)
                                                if matching_nodes not in [None, []]:
                                                    dep_node_id = matching_nodes[0].get('node_id', None)
                                                    score = float(matching_nodes[0].get('score', 0))
                                                    if score == 1.0 and dep_node_id in node_data_futures:
                                                        dep_futures.append(node_data_futures[dep_node_id])
                                    elif isinstance(prev_deps, int):
                                        if context_idx < len(context_data['subqueries']):
                                            dep_query = context_data['subqueries'][prev_deps]['subquery']
                                            matching_nodes = self.find_nodes_by_properties(query=dep_query)
                                            if matching_nodes not in [None, []]:
                                                dep_node_id = matching_nodes[0].get('node_id', None)
                                                score = matching_nodes[0].get('score', 0)
                                                if score == 1.0 and dep_node_id in node_data_futures:
                                                    dep_futures.append(node_data_futures[dep_node_id])
                            if current_deps not in [None, []]:
                                current_deps_list = [current_deps] if isinstance(current_deps, int) else current_deps
                                for dep_idx in current_deps_list:
                                    if dep_idx < len(sub_query_ids):
                                        dep_node_id = sub_query_ids[dep_idx]
                                        if dep_node_id in node_data_futures:
                                            dep_futures.append(node_data_futures[dep_node_id])
                        process_tasks.append(process_dependent_node(sub_node_id, sub_query, dep_futures, future))

            if process_tasks:
                await self.emit_event("search_process_started", {
                    "depth": depth,
                    "sub_queries": sub_queries,
                    "roles": roles
                })

                processed_sub_queries = set()
                for sub_query, future in futures.items():
                    try:
                        parent_content = future.result().strip()
                    except:
                        parent_content = ""

                    child_futures = all_child_futures.get(sub_query)
                    any_child_done = any(cf.done() and cf.result().strip() for cf in child_futures)

                    if parent_content or any_child_done:
                        await self.emit_event("sub_query_processed", {"sub_query": sub_query})
                        processed_sub_queries.add(sub_query)

                await asyncio.gather(*process_tasks)

            if depth == 0:
                for sub_query, future in futures.items():
                    if sub_query not in processed_sub_queries:                        
                        try:
                            parent_content = future.result().strip()
                        except:
                            parent_content = ""

                        child_futures = all_child_futures.get(sub_query)
                        any_child_done = any(cf.done() and cf.result().strip() for cf in child_futures)

                        if parent_content or any_child_done:
                            await self.emit_event("sub_query_processed", {"sub_query": sub_query})
                        else:
                            await self.emit_event("sub_query_failed", {"sub_query": sub_query})

                print("Graph building complete, processing final tasks...")
                await self.emit_event("search_process_completed", {
                    "depth": depth,
                    "sub_queries": sub_queries,
                    "roles": roles
                })

                create_cross_connections()
                print("All cross-connections have been created!")
                print(f"Adding similarity edges with threshold {threshold}")

                graph_data = self._get_current_graph_data()
                node_map = graph_data["node_map"]
                all_node_ids = list(node_map.keys())

                for i, node1 in enumerate(all_node_ids):
                    for node2 in all_node_ids[i+1:]:
                        if not self.edge_exists(node1, node2):
                            self.add_edge_based_on_similarity_and_relevance(node1, node2, query, threshold)

                print("All similarity edges have been added!")

    async def process_graph(
            self, 
            query: str, 
            data: str = None, 
            similarity_threshold: float = 0.8, 
            relevance_threshold: float = 0.7,
            sub_sub_queries: bool = True,
            session_id: str = None,
            max_tokens_allowed: int = 128000
        ):
        """Process a query and manage graph creation/modification."""
        def check_query_similarity(new_query: str, similarity_threshold: float = 0.8) -> Dict[str, Any]:
            if self.current_graph_id is None:
                raise Exception("Error: No current graph ID. Cannot check query similarity.")
            
            graph_data = self._get_current_graph_data()
            graph = graph_data["graph"]
            node_map = graph_data["node_map"]
            similarities = []

            if not node_map:
                return {"should_create_new": True}
            
            for node_id, idx in node_map.items():
                node_data = graph.get_node_data(idx)

                if not node_data.get("query"):
                    continue

                similarity = self.calculate_query_similarity(new_query, node_data.get("query"))
                if similarity >= similarity_threshold:
                    similarities.append({
                        "node_id": node_id,
                        "query": node_data.get("query"),
                        "score": similarity,
                        "role": node_data.get("role")
                    })

            if not similarities:
                print(f"No similar queries found above threshold {similarity_threshold}")
                return {"should_create_new": True}
            
            best_match = max(similarities, key=lambda x: x["score"])

            rel_type = "root"
            if "SSQ" in best_match["node_id"]:
                rel_type = "sub-sub"

            elif "SQ" in best_match["node_id"]:
                rel_type = "sub"

            return {
                "most_similar_query": best_match["query"],
                "similarity_score": best_match["score"],
                "relationship_type": rel_type,
                "node_id": best_match["node_id"],
                "should_create_new": best_match["score"] < similarity_threshold
            }
        try:
            graphs = self.get_graphs()

            if not graphs:
                print("No existing graphs found. Creating new graph.")
                self.create_new_graph()
                await self.emit_event("graph_operation", {"operation_type": "creating_new_graph"})
                await self.build_graph(
                    query=query,
                    data=data,
                    threshold=relevance_threshold,
                    recurse=sub_sub_queries,
                    session_id=session_id,
                    max_tokens_allowed=max_tokens_allowed
                )
                gc.collect()
                self.prune_edges()
                self.update_pagerank()
                self.verify_graph_integrity()
                self.verify_graph_consistency()
                return
            
            max_similarity = 0
            most_similar_graph = None
            consolidated_graphs = {}

            for graph_obj in graphs:
                graph_info = graph_obj.get("graph_info")
                if not graph_info:
                    continue

                graph_id = graph_info.get("graph_id")

                if not graph_id:
                    continue

                if graph_id not in consolidated_graphs:
                    consolidated_graphs[graph_id] = {
                        "graph_id": graph_id,
                        "nodes": []
                    }

                if graph_info.get("nodes"):
                    consolidated_graphs[graph_id]["nodes"].extend(graph_info["nodes"])

            for graph_id, graph_data in consolidated_graphs.items():
                nodes = graph_data["nodes"]

                for node in nodes:
                    if node.get("query"):
                        similarity = self.calculate_query_similarity(query, node["query"])

                        if node.get("id", "").startswith("SQ"):
                            asyncio.create_task(self.emit_event("retrieved_sub_query", {
                                    "sub_query": node["query"]
                                }))
                            
                        if similarity > max_similarity:
                            max_similarity = similarity
                            most_similar_graph = graph_id

            if max_similarity >= similarity_threshold:
                print(f"Found similar query with score {round(max_similarity, 2)}")
                self.current_graph_id = most_similar_graph

                if round(max_similarity, 2) == 1.0:
                    print("Loading and using existing graph")
                    await self.emit_event("graph_operation", {"operation_type": "loading_existing_graph"})
                    success = self.load_graph(self.root_node_id)

                    if not success:
                        raise Exception("Failed to load existing graph")
                    
                else:
                    print("Checking for node-level similarity...")
                    similarity_info = check_query_similarity(
                        query, 
                        similarity_threshold
                    )

                    if similarity_info["relationship_type"] in ["sub", "sub-sub"]:
                        print(f"Most Similar Query: {similarity_info['most_similar_query']}")
                        print("Modifying existing graph structure")
                        await self.emit_event("graph_operation", {"operation_type": "modifying_existing_graph"})
                        await self.modify_graph(
                            query,
                            similarity_info["node_id"],
                            session_id=session_id
                        )
                        gc.collect()
                        self.prune_edges()
                        self.update_pagerank()
                        self.verify_graph_integrity()
                        self.verify_graph_consistency()

            else:
                print(f"Creating new graph for query: {query}")
                self.create_new_graph()
                await self.emit_event("graph_operation", {"operation_type": "creating_new_graph"})
                await self.build_graph(
                    query=query,
                    data=data,
                    threshold=relevance_threshold,
                    recurse=sub_sub_queries,
                    session_id=session_id,
                    max_tokens_allowed=max_tokens_allowed
                )
                gc.collect()
                self.prune_edges()
                self.update_pagerank()
                self.verify_graph_integrity()
                self.verify_graph_consistency()
        except (RateLimitError, ResourceExhausted, AnthropicRateLimitError, RetryError):
            pass
        except Exception as e:
            print(f"Error in process_graph: {str(e)}")
            raise

    def add_edge_based_on_similarity_and_relevance(self, node1_id: str, node2_id: str, query: str, threshold: float = 0.8):
        """Add edges based on node similarity and relevance."""
        graph_data = self._get_current_graph_data()
        graph = graph_data["graph"]
        node_map = graph_data["node_map"]

        if node1_id not in node_map or node2_id not in node_map:
            return
        
        idx1 = node_map[node1_id]
        idx2 = node_map[node2_id]
        node1_data = graph.get_node_data(idx1)
        node2_data = graph.get_node_data(idx2)

        if not all([node1_data.get("embedding"), node2_data.get("embedding"), node1_data.get("data"), node2_data.get("data")]):
            return
        
        similarity = self.cosine_similarity(node1_data["embedding"], node2_data["embedding"])
        query_relevance1 = self.calculate_relevance(query, node1_data["data"])
        query_relevance2 = self.calculate_relevance(query, node2_data["data"])
        node_relevance = self.calculate_relevance(node1_data["data"], node2_data["data"])
        weight = (similarity + query_relevance1 + query_relevance2 + node_relevance) / 4

        if weight >= threshold:
            self.add_edge(node1_id, node2_id, weight=weight, relationship_type='similarity_and_relevance')
            print(f"Added edge between {node1_id} and {node2_id} with type similarity_and_relevance and weight {weight}")

    def calculate_relevance(self, data1: str, data2: str) -> float:
        """Calculate relevance between two data strings."""
        try:
            if not data1 or not data2:
                return 0.0
            
            P, R, F1 = self.scorer.score([data1], [data2])
            return F1.mean().item()
        except Exception as e:
            print(f"Error calculating relevance: {str(e)}")
            return 0.0

    def calculate_query_similarity(self, query1: str, query2: str) -> float:
        """Calculate similarity between two queries."""
        try:
            embedding1 = self.model.encode(query1).tolist()
            embedding2 = self.model.encode(query2).tolist()
            return self.cosine_similarity(embedding1, embedding2)
        except Exception as e:
            print(f"Error calculating query similarity: {str(e)}")
            return 0.0

    def get_similarities_and_relevance(self, threshold: float = 0.8) -> list:
        """Get similarities and relevance between nodes."""
        try:
            graph_data = self._get_current_graph_data()
            graph = graph_data["graph"]
            node_map = graph_data["node_map"]
            nodes = []

            for node_id, idx in node_map.items():
                node_data = graph.get_node_data(idx)
                nodes.append({
                    "id": node_data.get("id"),
                    "embedding": node_data.get("embedding"),
                    "data": node_data.get("data")
                })

            similarities = []
            for i, node1 in enumerate(nodes):
                for node2 in nodes[i + 1:]:
                    similarity = self.cosine_similarity(node1["embedding"], node2["embedding"])
                    relevance = self.calculate_relevance(node1["data"], node2["data"])
                    weight = (similarity + relevance) / 2

                    if weight >= threshold:
                        similarities.append({
                            'node1': node1["id"],
                            'node2': node2["id"],
                            'similarity': similarity,
                            'relevance': relevance,
                            'weight': weight
                        })

            return similarities
        except Exception as e:
            print(f"Error getting similarities and relevance: {str(e)}")
            return []

    def get_node_relationships(self, node_id=None, depth=None, role=None, relationship_type=None):
        """Get relationships between nodes with filtering options."""
        graph_data = self._get_current_graph_data()
        graph = graph_data["graph"]
        node_map = graph_data["node_map"]
        relationships = {}

        for n_id, idx in node_map.items():
            if n_id == self.root_node_id:
                continue

            node_data = graph.get_node_data(idx)

            if node_id and n_id != node_id:
                continue

            if role and node_data.get("role") != role:
                continue

            in_edges = []
            for u, v, edge_data in graph.in_edges(idx):
                source_id = graph.get_node_data(u).get("id")
                in_edges.append((source_id, n_id, {"weight": edge_data.get("weight"), "type": edge_data.get("type")}))

            out_edges = []
            for u, v, edge_data in graph.out_edges(idx):
                target_id = graph.get_node_data(v).get("id")
                out_edges.append((n_id, target_id, {"weight": edge_data.get("weight"), "type": edge_data.get("type")}))

            relationships[n_id] = {"in_edges": in_edges, "out_edges": out_edges}

        return relationships

    def find_nodes_by_properties(self, query: str = None, embedding: list = None, 
                               node_data: dict = None, similarity_threshold: float = 0.8) -> list:
        """Find nodes based on properties."""
        try:
            graph_data = self._get_current_graph_data()
            graph = graph_data["graph"]
            node_map = graph_data["node_map"]
            matching_nodes = []

            for n_id, idx in node_map.items():
                data = graph.get_node_data(idx)
                match_score = 0
                matches = 0

                if query and query.lower() in data.get("query", "").lower():
                    match_score += 1
                    matches += 1

                if embedding and "embedding" in data:
                    sim = self.cosine_similarity(embedding, data["embedding"])

                    if sim >= similarity_threshold:
                        match_score += sim
                        matches += 1

                if node_data:
                    data_matches = sum(1 for k, v in node_data.items() if k in data and data[k] == v)

                    if data_matches > 0:
                        match_score += data_matches / len(node_data)
                        matches += 1

                if matches > 0:
                    matching_nodes.append({
                        "node_id": n_id,
                        "score": match_score / matches,
                        "data": data
                    })

            matching_nodes.sort(key=lambda x: x["score"], reverse=True)

            return matching_nodes
        except Exception as e:
            print(f"Error finding nodes by properties: {str(e)}")
            raise

    def query_graph(self, query: str) -> str:
        """Query the graph for a specific query, collecting data from the entire relevant subgraph."""
        graph_data = self._get_current_graph_data()
        graph = graph_data["graph"]
        node_map = graph_data["node_map"]
        target_node_id = None

        for n_id, idx in node_map.items():
            if graph.get_node_data(idx).get("query") == query:
                target_node_id = n_id
                break

        if not target_node_id:
            raise ValueError(f"Query node not found for: {query}")
        
        datas = []
        start_idx = node_map[target_node_id]
        visited = set()
        stack = [start_idx]

        while stack:
            current = stack.pop()

            if current in visited:
                continue
            visited.add(current)
            current_data = graph.get_node_data(current)

            if current_data.get("data") and current_data.get("data").strip():
                datas.append(current_data.get("data").strip())

            for neighbor in graph.neighbors(current):
                if neighbor not in visited:
                    stack.append(neighbor)

        if not datas:
            print(f"No data found for: {query}")
            return ""
        
        return "\n\n".join([f"Data {i+1}:\n{data}" for i, data in enumerate(datas)])

    def prune_edges(self, max_edges: int = 1000):
        """Prune excess edges while preserving node data."""
        print(f"Pruning edges to maximum {max_edges} edges...")
        graph_data = self._get_current_graph_data()
        graph = graph_data["graph"]
        all_edges = list(graph.edge_list())
        current_edges = len(all_edges)

        if current_edges > max_edges:
            sorted_edges = sorted(all_edges, key=lambda x: x[2].get("weight", 1.0), reverse=True)
            edges_to_keep = set()
            
            for edge in sorted_edges[:max_edges]:
                edges_to_keep.add((edge[0], edge[1]))

            edges_to_remove = []
            for edge in all_edges:
                if (edge[0], edge[1]) not in edges_to_keep:
                    edges_to_remove.append((edge[0], edge[1]))

            for u, v in edges_to_remove:
                try:
                    graph.remove_edge(u, v)
                except Exception as e:
                    print(f"Error removing edge from {u} to {v}: {e}")

            print(f"Pruned edges. Kept top {max_edges} edges by weight.")

        print("No pruning required. Current edge count is within limits.")

    def update_pagerank(self):
        """Update PageRank values using Rustworkx's pagerank algorithm."""
        if not self.current_graph_id:
            print("No current graph selected. Cannot compute PageRank.")
            return
        
        graph_data = self._get_current_graph_data()
        graph = graph_data["graph"]

        try:
            pr = rx.pagerank(graph, weight_fn=lambda e: e.get("weight", 1.0))
            node_map = graph_data["node_map"]

            for n_id, idx in node_map.items():
                node_data = graph.get_node_data(idx)
                node_data["pagerank"] = pr[idx]

            print("PageRank updated successfully")
        except Exception as e:
            print(f"Error updating PageRank: {str(e)}")
            raise

    def display_graph(self):
        """Display the graph using PyVis."""
        graph_data = self._get_current_graph_data()
        graph = graph_data["graph"]
        node_map = graph_data["node_map"]
        net = Network(height="530px", width="100%", directed=True, bgcolor="#222222", font_color="white")
        net.options = {"physics": {"enabled": False}}
        all_nodes = set()
        all_edges = []

        for (u, v), edge_data in zip(graph.edge_list(), graph.edges()):
            source_data = graph.get_node_data(u)
            target_data = graph.get_node_data(v)
            source_id = source_data.get("id")
            target_id = target_data.get("id")
            source_tooltip = f"Query: {source_data.get('query', 'N/A')}"
            target_tooltip = f"Query: {target_data.get('query', 'N/A')}"

            if source_id not in all_nodes:
                net.add_node(source_id, label=source_id, title=source_tooltip, size=20, color="#00cc66")
                all_nodes.add(source_id)

            if target_id not in all_nodes:
                net.add_node(target_id, label=target_id, title=target_tooltip, size=20, color="#00cc66")
                all_nodes.add(target_id)

            edge_type = edge_data.get("type", "N/A")
            edge_weight = edge_data.get("weight", "N/A")
            edge_tooltip = f"Weight: {edge_weight}"
            all_edges.append({
                "from": source_id,
                "to": target_id,
                "label": edge_type,
                "title": edge_tooltip
            })

        for edge in all_edges:
            net.add_edge(edge["from"], edge["to"], title=edge["title"], color="#cccccc")

        net.options["layout"] = {"improvedLayout": True}
        net.options["interaction"] = {"dragNodes": True}

        original_dir = os.getcwd()
        os.chdir(os.getenv("WRITABLE_DIR", "/tmp"))

        net.save_graph("temp_graph.html")

        with open("temp_graph.html", "r", encoding="utf-8") as f:
            html_str = f.read()
            
        os.remove("temp_graph.html")
        os.chdir(original_dir)

        return html_str

    def verify_graph_integrity(self):
        """Verify and fix graph integrity issues."""
        graph_data = self._get_current_graph_data()
        graph = graph_data["graph"]
        node_map = graph_data["node_map"]
        orphaned = []

        for n_id, idx in node_map.items():
            if not graph.in_edges(idx) and not graph.out_edges(idx):
                orphaned.append(n_id)

        if orphaned:
            print(f"Found orphaned nodes: {orphaned}")

        invalid_edges = []
        for u, v in graph.edge_list():
            target_data = graph.get_node_data(v)

            if target_data.get("graph_id") != self.current_graph_id:
                invalid_edges.append((graph.get_node_data(u).get("id"), target_data.get("id")))

        if invalid_edges:
            print(f"Found invalid edges: {invalid_edges}")
            edges_to_remove = []

            for u, v in graph.edge_list():
                if graph.get_node_data(v).get("graph_id") != self.current_graph_id:
                    edges_to_remove.append((u, v))

            for u, v in edges_to_remove:
                try:
                    graph.remove_edge(u, v)
                except Exception as e:
                    Exception(f"Error removing invalid edge from {u} to {v}: {e}")

        print("Graph integrity verified successfully")

        return True

    def verify_graph_consistency(self):
        """Verify consistency of the in-memory graph."""
        graph_data = self._get_current_graph_data()
        graph = graph_data["graph"]
        node_map = graph_data["node_map"]

        for n_id, idx in node_map.items():
            node_data = graph.get_node_data(idx)

            if node_data.get("id") is None or node_data.get("query") is None:
                raise ValueError("Found nodes with missing required properties")
            
        for edge_data in graph.edges():
            if edge_data.get("type") is None or edge_data.get("weight") is None:
                raise ValueError("Found relationships with missing required properties")
            
        print("Graph consistency verified successfully")

        return True

    async def close(self):
        """Properly cleanup all resources."""
        try:
            if hasattr(self, 'executor'):
                self.executor.shutdown(wait=True)

            if hasattr(self, 'crawler'):
                await asyncio.shield(self.crawler.cleanup_expired_sessions())
                await asyncio.shield(self.crawler.cleanup_browser_context(getattr(self, "session_id", None)))
        except Exception as e:
            print(f"Error during cleanup: {e}")

    @staticmethod
    def cosine_similarity(v1: List[float], v2: List[float]) -> float:
        """Calculate cosine similarity between two vectors."""
        try:
            v1_array = np.array(v1)
            v2_array = np.array(v2)
            return np.dot(v1_array, v2_array) / (np.linalg.norm(v1_array) * np.linalg.norm(v2_array))
        except Exception as e:
            print(f"Error calculating cosine similarity: {str(e)}")
            return 0.0

if __name__ == "__main__":
    import os
    from dotenv import load_dotenv
    from src.reasoning.reasoner import Reasoner
    from src.evaluation.evaluator import Evaluator

    load_dotenv()

    graph_search = GraphRAG(num_workers=24)
    evaluator = Evaluator()
    reasoner = Reasoner()

    async def test_graph_search():
        # Sample data for testing
        queries = [
"""In the context of global economic recovery and energy security concerns, provide an in-depth comparative assessment of the renewable energy policies among G20 countries. 
Specifically, examine how short-term economic stimulus measures intersect with long-term decarbonization commitments, including:
1. Carbon pricing mechanisms 
2. Subsidies for emerging technologies (such as green hydrogen and battery storage) 
3. Cross-border climate finance initiatives

Highlight the unique challenges faced by both advanced and emerging economies in addressing:
1. Energy poverty 
2. Supply chain disruptions 
3. Geopolitical tensions (e.g., the Russia-Ukraine conflict)

Discuss how these factors influence policy effectiveness, and evaluate the degree to which each country is on track to meet—or exceed—its Paris Agreement targets. 
Note any significant policy gaps, regional collaborations, or innovative best practices.
Lastly, provide a forward-looking perspective on how these renewable energy strategies may evolve over the next decade, considering:
1. Technological breakthroughs 
2. Global market trends 
3. Potential climate-related disasters

Present your analysis as a detailed, well-formatted report.""",
"""Analyse the impact of 'hot-money' on the value of Indian Rupee and answer the following questions:- 
1. How does it affect the exchange rate?
2. How can it be mitigated/eliminated?
3. Why is it a problem?
4. What are the consequences?
5. What are the alternatives?
    - Evaluate the alternatives for pros and cons.
        - Evaluate the impact of alternatives on the exchange rate.
        - How can they be implemented?
        - What are the consequences of each alternative?
    - Evaluate the feasibility of the alternatives.
    - Pick top 5 alternatives and justify your choices in detail.
6. What are the implications for the Indian economy? Furthermore:- 
    - Evaluate the impact of the chosen alternatives on the Indian economy.""",
"""Inflation has been an intrinsic past of human civilization since the very beginning. Answer the following questions:- 
1. How true is the above statement?
2. What are the causes of inflation?
3. What are the consequences of inflation?
4. Can we completely eliminate inflation?""",
"""Perform a detailed comparison between the ancient Greece and Roman civilizations.
1. What were the key differences between the two civilizations?
    - Evaluate the differences in governance, society, and culture
    - Evaluate the differences in economy, trade, and military
    - Evaluate the differences in technology and infrastructure
2. What were the similarities between the two civilizations?
    - Evaluate the similarities in governance, society, and culture
    - Evaluate the similarities in economy, trade, and military
    - Evaluate the similarities in technology and infrastructure
3. How did these two civilizations influence each other?
    - Evaluate the influence of one civilization on the other
4. How did these two civilizations influence the modern world?
5. Was there another civilization that influenced these two? If yes, how?""",
"""Evaluate the long-term effects of colonialism on economic development in Asia:- 
1. Include case studies of at least five different countries
2. Analyze how these effects differ based on colonial power, time of independence, and resource distribution
    - Evaluate the impact of colonialism on the economy of the country
    - Evaluate the impact of colonialism on the economy of the region
    - Evaluate the impact of colonialism on the economy of the world
3. How do these effects compare to Africa?"""
        ]
        follow_on_queries = [
            "How is 'hot-money' related to the current economic situation in India?",
            "What is inflation?",
            "Did ancient Greece and Rome have any impact on modern democracy? If yes, how?",
            "Did colonialism have any impact on the trade between Africa and Asia, both in colonial and post-colonial times? If yes, how?"
        ]

        while True:
            print("\n\nEnter query (finish input with an empty line):")
            query_lines = []

            while True:
                line = input()

                if line.strip() == "":
                    break
                query_lines.append(line)

            query = "\n".join(query_lines).strip()

            if query.strip().lower() == "exit":
                break
            print("\n\n" + "="*15 + " Processing Query " + "="*15 + "\n\n")

            await graph_search.process_graph(query, similarity_threshold=0.8, relevance_threshold=0.8)

            answer = graph_search.query_graph(query)

            response = ""
            async for chunk in reasoner.reason(query, answer):
                response += chunk
                print(response, end="", flush=True)

            graph_search.display_graph()

            evaluation = await evaluator.evaluate_response(query, response, [answer])
            print(f"Faithfulness: {evaluation['faithfulness']}")
            print(f"Answer Relevancy: {evaluation['answer relevancy']}")
            print(f"Context Utilization: {evaluation['contextual recall']}")

        await graph_search.close()

    asyncio.run(test_graph_search())