Spaces:
Paused
Paused
File size: 98,993 Bytes
4279593 83e870c 4279593 b2e81d3 4279593 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 |
import os
import gc
import time
import asyncio
import torch
import uuid
from contextlib import contextmanager
from neo4j import GraphDatabase
from pyvis.network import Network
from src.query_processing.late_chunking.late_chunker import LateChunker
from src.query_processing.query_processor import QueryProcessor
from src.reasoning.reasoner import Reasoner
from src.utils.api_key_manager import APIKeyManager
from src.search.search_engine import SearchEngine
from src.crawl.crawler import CustomCrawler #, Crawler
from sentence_transformers import SentenceTransformer
from bert_score.scorer import BERTScorer
import numpy as np
from concurrent.futures import ThreadPoolExecutor
from typing import List, Dict, Any
class Neo4jGraphRAG:
def __init__(self, num_workers: int = 1):
"""Initialize Neo4j connection and required components."""
# Neo4j connection setup
self.neo4j_uri = os.getenv("NEO4J_URI")
self.neo4j_user = os.getenv("NEO4J_USER")
self.neo4j_password = os.getenv("NEO4J_PASSWORD")
self.driver = GraphDatabase.driver(
self.neo4j_uri,
auth=(self.neo4j_user, self.neo4j_password)
)
# Component initialization
self.num_workers = num_workers
self.search_engine = SearchEngine()
self.query_processor = QueryProcessor()
self.reasoner = Reasoner()
# self.crawler = Crawler(verbose=True)
self.custom_crawler = CustomCrawler(max_concurrent_requests=1000)
self.chunking = LateChunker()
self.llm = APIKeyManager().get_llm()
# Model initialization
self.model = SentenceTransformer(
"dunzhang/stella_en_400M_v5",
trust_remote_code=True,
device="cuda" if torch.cuda.is_available() else "cpu"
)
self.scorer = BERTScorer(
model_type="roberta-base",
lang="en",
rescale_with_baseline=True,
device= "cpu" # "cuda" if torch.cuda.is_available() else "cpu"
)
# Counters and tracking
self.root_node_id = "QR"
self.node_counter = 0
self.sub_node_counter = 0
self.cross_connections = set()
# Add graph tracking
self.current_graph_id = None
# Thread pool
self.executor = ThreadPoolExecutor(max_workers=self.num_workers)
# Create a callback to emit an event
self.on_event_callback = None
def set_on_event_callback(self, callback):
"""Register a single callback to be triggered for various event types."""
self.on_event_callback = callback
async def emit_event(self, event_type: str, data: dict):
"""Helper method to safely emit an event if a callback is registered."""
if self.on_event_callback:
# Check if the callback is asynchronous or synchronous
if asyncio.iscoroutinefunction(self.on_event_callback):
# The callback signature: callback(event_type, data)
return await self.on_event_callback(event_type, data)
else:
return self.on_event_callback(event_type, data)
@contextmanager
def transaction(self, max_retries: int = 1):
"""Synchronous context manager for Neo4j transactions."""
session = self.driver.session()
retry_count = 0
while True:
try:
tx = session.begin_transaction()
try:
yield tx
tx.commit()
break
except Exception as e:
tx.rollback()
raise e
except Exception as e:
retry_count += 1
if retry_count >= max_retries:
print(f"Transaction failed after {max_retries} attempts: {str(e)}")
raise e
print(f"Transaction failed, retrying ({retry_count}/{max_retries}): {str(e)}")
time.sleep(1) # Use regular sleep for sync context
finally:
session.close()
def initialize_schema(self):
"""Check and initialize database schema."""
constraint_node_id_per_graph = None
index_node_query = None
index_node_role = None
constraint_graph_id = None
index_graph_created = None
constraint_node_graph = None
try:
with self.transaction() as tx:
# Check if schema already exists by looking for our composite constraint
constraint_node_id_per_graph = tx.run("""
SHOW CONSTRAINTS
WHERE name = 'constraint_node_id_per_graph'
""").data()
index_node_role = tx.run("""
SHOW INDEXES
WHERE name = 'index_node_role'
""").data()
index_node_graph_id = tx.run("""
SHOW INDEXES
WHERE name = 'index_node_graph_id'
""").data()
constraint_graph_id = tx.run("""
SHOW CONSTRAINTS
WHERE name = 'constraint_graph_id'
""").data()
index_graph_created = tx.run("""
SHOW INDEXES
WHERE name = 'index_graph_created'
""").data()
constraint_node_graph = tx.run("""
SHOW CONSTRAINTS
WHERE name = 'constraint_node_graph'
""").data()
if constraint_node_id_per_graph and index_node_role and \
index_node_graph_id and constraint_graph_id and index_graph_created and constraint_node_graph:
print("Database schema already initialized")
return
print("Initializing database schema...")
# Create composite constraint for node ID uniqueness within each graph
if not constraint_node_id_per_graph:
tx.run("""
CREATE CONSTRAINT constraint_node_id_per_graph IF NOT EXISTS
FOR (n:Node)
REQUIRE (n.id, n.graph_id) IS UNIQUE
""")
if not index_node_role:
tx.run("""
CREATE INDEX index_node_role IF NOT EXISTS FOR (n:Node)
ON (n.role)
""")
if not index_node_graph_id:
tx.run("""
CREATE INDEX index_node_graph_id IF NOT EXISTS FOR (n:Node)
ON (n.graph_id)
""")
# Graph management constraints
if not constraint_graph_id:
tx.run("""
CREATE CONSTRAINT constraint_graph_id IF NOT EXISTS
FOR (g:Graph)
REQUIRE g.id IS UNIQUE
""")
if not index_graph_created:
tx.run("""
CREATE INDEX index_graph_created IF NOT EXISTS FOR (g:Graph)
ON (g.created)
""")
if not constraint_node_graph:
tx.run("""
CREATE CONSTRAINT constraint_node_graph IF NOT EXISTS
FOR (n:Node)
REQUIRE n.graph_id IS NOT NULL
""")
print("Database schema initialization complete")
except Exception as e:
print(f"Error ensuring schema exists: {str(e)}")
raise
def add_node(self, node_id: str, query: str, data: str = "", role: str = None):
"""Add a node to the current graph."""
if self.current_graph_id is None:
raise Exception("Error: No current graph selected")
try:
with self.transaction() as tx:
# Generate embedding
embedding = self.model.encode(query).tolist()
# Create node with properties including embedding and graph ID
result = tx.run(
"""
MERGE (n:Node {id: $node_id, graph_id: $graph_id})
SET n.query = $node_query,
n.embedding = $embedding,
n.data = $data,
n.role = $role
""",
node_id=node_id,
graph_id=self.current_graph_id,
node_query=query,
embedding=embedding,
data=data,
role=role
)
print(f"Added node '{node_id}' to graph '{self.current_graph_id}' with role '{role}' and query: '{query}'")
except Exception as e:
print(f"Error adding node '{node_id}' to graph '{self.current_graph_id}' with role '{role}' and query: '{query}': {str(e)}")
raise
def add_edge(self, node1: str, node2: str, weight: float = 1.0, relationship_type: str = None):
"""Add an edge between two nodes in a way that preserves a DAG structure in the graph"""
if self.current_graph_id is None:
raise Exception("Error: No current graph selected")
# 1) Prevent self loops
if node1 == node2:
print(f"Cannot add edge to the same node {node1}!")
return
try:
with self.transaction() as tx:
# 2) Check if there is already a path from node2 back to node1
check_path = tx.run(
"""
MATCH (start:Node {id: $node2, graph_id: $graph_id})
MATCH (end:Node {id: $node1, graph_id: $graph_id})
// If there's any path of length >= 0 from 'start' to 'end',
// then creating (end)->(start) would introduce a cycle.
WHERE (start)-[:RELATION*0..]->(end)
RETURN COUNT(start) AS pathExists
""",
node1=node1,
node2=node2,
graph_id=self.current_graph_id
)
path_count = check_path.single()["pathExists"]
if path_count > 0:
print(f"An edge between {node1} -> {node2} already exists!")
return
# 3) Otherwise, safe to create a new directed edge
tx.run(
"""
MATCH (a:Node {id: $node1, graph_id: $graph_id})
MATCH (b:Node {id: $node2, graph_id: $graph_id})
MERGE (a)-[r:RELATION {type: $rel_type}]->(b)
SET r.weight = $weight
""",
node1=node1,
node2=node2,
graph_id=self.current_graph_id,
rel_type=relationship_type,
weight=weight
)
print(
f"Added edge between '{node1}' and '{node2}' in graph "
f"'{self.current_graph_id}' (type='{relationship_type}', weight={weight})"
)
except Exception as e:
print(f"Error adding edge between '{node1}' and '{node2}': {str(e)}")
raise
def edge_exists(self, node1: str, node2: str) -> bool:
"""Check if an edge exists between two nodes."""
try:
with self.transaction() as tx:
result = tx.run(
"""
MATCH (a:Node {id: $node1})-[r:RELATION]-(b:Node {id: $node2})
RETURN COUNT(r) as count
""",
node1=node1,
node2=node2
)
return result.single()["count"] > 0
except Exception as e:
print(f"Error checking edge existence between {node1} and {node2}: {str(e)}")
raise
def graph_exists(self) -> bool:
"""Check if a graph exists in Neo4j."""
try:
with self.transaction() as tx:
result = tx.run("""
MATCH (n:Node)
RETURN count(n) > 0 as has_nodes
""")
return result.single()["has_nodes"]
except Exception as e:
print(f"Error checking graph existence: {str(e)}")
raise
def get_graphs(self) -> list:
"""Get detailed information about all existing graphs and their nodes."""
try:
with self.transaction() as tx:
result = tx.run(
"""
MATCH (g:Graph)
OPTIONAL MATCH (n:Node {graph_id: g.id})-[r:RELATION]->(:Node)
WITH g, collect(DISTINCT n) AS nodes, collect(DISTINCT r) AS rels
RETURN {
graph_id: g.id,
created: g.created,
updated: g.updated,
node_count: size(nodes),
edge_count: size(rels),
nodes: [node IN nodes | {
id: node.id,
query: node.query,
data: node.data,
role: node.role,
pagerank: node.pagerank
}]
} as graph_info
ORDER BY g.created DESC
"""
)
return list(result)
except Exception as e:
print(f"Error getting graphs: {str(e)}")
raise
def select_graph(self, graph_id: str) -> bool:
"""Select a specific graph as the current working graph."""
try:
with self.transaction() as tx:
result = tx.run("""
MATCH (g:Graph {id: $graph_id})
RETURN g
""", graph_id=graph_id)
if result.single():
self.current_graph_id = graph_id
return True
return False
except Exception as e:
print(f"Error selecting graph: {str(e)}")
raise
def create_new_graph(self) -> str:
"""Create a new graph instance and its ID."""
try:
with self.transaction() as tx:
graph_id = str(uuid.uuid4())
tx.run("""
CREATE (g:Graph {
id: $graph_id,
created: datetime(),
updated: datetime()
})
""", graph_id=graph_id)
self.current_graph_id = graph_id
except Exception as e:
print(f"Error creating new graph: {str(e)}")
raise
def load_graph(self, node_id: str) -> bool:
"""Load an existing graph structure from Neo4j based on node ID."""
# Helper function to safely extract number from node ID
def extract_number(node_id: str) -> int:
try:
# Extract all digits from the string
num_str = ''.join(filter(str.isdigit, node_id))
return int(num_str) if num_str else 0
except ValueError:
print(f"Warning: Could not extract number from node ID: {node_id}")
return 0
try:
with self.driver.session() as session:
# Start transaction
tx = session.begin_transaction()
try:
# Get all related nodes and relationships
result = tx.run("""
MATCH path = (n:Node)-[r:RELATION*0..]->(m:Node)
WHERE n.id = $node_id
RETURN DISTINCT n, r, m,
length(path) as depth,
[rel in r | type(rel)] as rel_types,
[rel in r | rel.weight] as weights
""", node_id=node_id)
# Reset internal state
self.node_counter = 0
self.sub_node_counter = 0
self.cross_connections.clear()
# Track processed nodes to avoid duplicates
processed_nodes = set()
# Process results
for record in result:
# Update counters based on node patterns
if record["n"]["id"] not in processed_nodes:
node_id = record["n"]["id"]
if "SQ" in node_id:
current_num = extract_number(node_id)
self.node_counter = max(self.node_counter, current_num)
elif "SSQ" in node_id:
current_num = extract_number(node_id)
self.sub_node_counter = max(self.sub_node_counter, current_num)
processed_nodes.add(node_id)
if record["m"]["id"] not in processed_nodes:
node_id = record["m"]["id"]
if "SQ" in node_id:
current_num = extract_number(node_id)
self.node_counter = max(self.node_counter, current_num)
elif "SSQ" in node_id:
current_num = extract_number(node_id)
self.sub_node_counter = max(self.sub_node_counter, current_num)
processed_nodes.add(node_id)
# Increment counters for next use
self.node_counter += 1
self.sub_node_counter += 1
# Track cross-connections
result = tx.run("""
MATCH (n:Node)-[r:RELATION]->(m:Node)
WHERE r.type = 'logical'
RETURN n.id as source, m.id as target
""")
for record in result:
connection = tuple(sorted([record["source"], record["target"]]))
self.cross_connections.add(connection)
tx.commit()
print(f"Successfully loaded graph. Current counters - Node: {self.node_counter}, Sub: {self.sub_node_counter}")
return True
except Exception as e:
tx.rollback()
print(f"Transaction error while loading graph: {str(e)}")
return False
except Exception as e:
print(f"Error loading graph: {str(e)}")
return False
async def modify_graph(self, new_query: str, similar_node_id: str, session_id: str = None):
"""Modify an existing graph structure by integrating a new query."""
# Inner function to add a new node as a sibling
async def add_as_sibling(node_id: str, query: str):
with self.transaction() as tx:
result = tx.run("""
MATCH (n:Node)<-[r:RELATION]-(parent:Node)
WHERE n.id = $node_id
RETURN parent.id as parent_id,
parent.query as parent_query,
r.type as rel_type
""", node_id=node_id)
parent_data = result.single()
if not parent_data:
raise ValueError(f"No parent found for node {node_id}")
if "SQ" in node_id:
self.node_counter += 1
new_node_id = f"SQ{self.node_counter}"
else:
self.sub_node_counter += 1
new_node_id = f"SSQ{self.sub_node_counter}"
self.add_node(
node_id=new_node_id,
query=query,
role="independent"
)
self.add_edge(
parent_data["parent_id"],
new_node_id,
relationship_type=parent_data["rel_type"]
)
return new_node_id
# Inner function to add a new node as a child
async def add_as_child(node_id: str, query: str):
if "SQ" in node_id:
self.sub_node_counter += 1
new_node_id = f"SSQ{self.sub_node_counter}"
else:
self.node_counter += 1
new_node_id = f"SQ{self.node_counter}"
self.add_node(
node_id=new_node_id,
query=query,
role="dependent"
)
self.add_edge(
node_id,
new_node_id,
relationship_type="logical"
)
return new_node_id
# Inner function to collect context from existing graph nodes
def collect_graph_context() -> list:
try:
with self.transaction() as tx:
# Get all nodes except root, ordered by depth and ID to maintain hierarchy
result = tx.run("""
MATCH (n:Node)
WHERE n.id <> $root_id AND n.graph_id = $graph_id
WITH n
ORDER BY
CASE
WHEN n.id STARTS WITH 'SQ' THEN 1
WHEN n.id STARTS WITH 'SSQ' THEN 2
ELSE 3
END,
n.id
RETURN COLLECT({
id: n.id,
query: n.query,
role: n.role
}) as nodes
""", root_id=self.root_node_id, graph_id=self.current_graph_id)
nodes = result.single()["nodes"]
if not nodes:
return []
# Group nodes by hierarchy level
level_queries = {}
current_sq = None
for node in nodes:
node_id = node["id"]
if node_id.startswith("SQ"):
current_sq = node_id
if current_sq not in level_queries:
level_queries[current_sq] = {
"originalquery": node["query"],
"subqueries": []
}
# Add the SQ node itself as a sub-query
level_queries[current_sq]["subqueries"].append({
"subquery": node["query"],
"role": node["role"],
"dependson": [] # Dependencies will be added below
})
elif node_id.startswith("SSQ") and current_sq:
level_queries[current_sq]["subqueries"].append({
"subquery": node["query"],
"role": node["role"],
"dependson": [] # Dependencies will be added below
})
# Add dependency information
for sq_id, query_data in level_queries.items():
for i, sub_query in enumerate(query_data["subqueries"]):
# Get dependencies for this sub_query
deps = tx.run("""
MATCH (n:Node {query: $node_query})-[r:RELATION {type: 'logical'}]->(m:Node)
WHERE n.graph_id = $graph_id
RETURN COLLECT(m.query) as dependencies
""", node_query=sub_query["subquery"], graph_id=self.current_graph_id)
dep_queries = deps.single()["dependencies"]
if dep_queries:
# Find indices of dependent queries
curr_deps = []
prev_deps = []
for dep_query in dep_queries:
# Check current level dependencies
curr_idx = next(
(idx for idx, sq in enumerate(query_data["subqueries"])
if sq["subquery"] == dep_query),
None
)
if curr_idx is not None:
curr_deps.append(curr_idx)
else:
# Check previous level dependencies
for prev_idx, prev_data in enumerate(level_queries.values()):
if dep_query in [sq["subquery"] for sq in prev_data["subqueries"]]:
prev_deps.append(prev_idx)
break
query_data["subqueries"][i]["dependson"] = [prev_deps, curr_deps]
# Convert to list maintaining order
return list(level_queries.values())
except Exception as e:
print(f"Error collecting graph context: {str(e)}")
raise
try:
# Get the role and other metadata of the similar node
with self.transaction() as tx:
result = tx.run("""
MATCH (n:Node {id: $node_id})
RETURN n.role as role,
n.query as query,
EXISTS((n)<-[:RELATION]-()) as has_parent
""", node_id=similar_node_id)
node_data = result.single()
if not node_data:
raise Exception(f"Node {similar_node_id} not found")
# Collect context from existing graph
context = collect_graph_context()
# Determine modification strategy
if node_data["role"] == "independent":
# Add as sibling if has parent, else as child
if node_data["has_parent"]:
new_node_id = await add_as_sibling(similar_node_id, new_query)
else:
new_node_id = await add_as_child(similar_node_id, new_query)
else:
# Add as child for dependent or pre-requisite nodes
new_node_id = await add_as_child(similar_node_id, new_query)
# Recursively build subgraph for new node if needed
await self.build_graph(
query=new_query,
parent_node_id=new_node_id,
depth=1 if "SQ" in new_node_id else 2,
context=context, # Pass the collected context
session_id=session_id
)
except Exception as e:
print(f"Error modifying graph: {str(e)}")
raise
async def build_graph(self, query: str, data: str = None, parent_node_id: str = None,
depth: int = 0, threshold: float = 0.8, recurse: bool = True,
context: list = None, session_id: str = None, max_tokens_allowed: int = 128000):
"""Build a new graph structure in Neo4j."""
async def process_node(self, node_id: str, sub_query: str,
session_id: str, future: asyncio.Future,
depth=depth, max_tokens_allowed=max_tokens_allowed):
"""Process a node asynchronously."""
try:
# Generate an optimized search query
optimized_query = await self.search_engine.generate_optimized_query(sub_query)
# Search for the sub-query
results = await self.search_engine.search(
query=optimized_query,
num_results=10,
exclude_filetypes=["pdf"]
)
# Emit event with the raw results
await self.emit_event("search_results_fetched", {
"node_id": node_id,
"sub_query": sub_query,
"optimized_query": optimized_query,
"search_results": results
})
# Filter the URLs based on the query
filtered_urls = await self.search_engine.filter_urls(
sub_query,
"extensive research dynamic structure",
results
)
# Emit an event with the filtered URLs
await self.emit_event("search_results_filtered", {
"node_id": node_id,
"sub_query": sub_query,
"filtered_urls": filtered_urls
})
# Get the URLs
urls = [result.get('link', 'No URL') for result in filtered_urls]
# Fetch URL contents
search_contents = await self.custom_crawler.fetch_page_contents(
urls,
sub_query,
session_id=session_id,
max_attempts=1,
timeout=30
)
# Emit an event with the fetched contents
await self.emit_event("search_contents_fetched", {
"node_id": node_id,
"sub_query": sub_query,
"contents": search_contents
})
# Format the contents
contents = ""
for k, content in enumerate(search_contents, 1):
if isinstance(content, Exception):
print(f"Error fetching content: {content}")
elif content:
contents += f"Document {k}:\n{content}\n\n"
if len(contents.strip()) > 0:
if depth == 0:
# Emit an event to indicate the completion of sub-query processing
await self.emit_event("sub_query_processed", {
"node_id": node_id,
"sub_query": sub_query,
"contents": contents
})
# Chunk the contents if it exceeds the token limit
token_count = self.llm.get_num_tokens(contents)
if token_count > max_tokens_allowed:
contents = await self.chunking.chunker(
text=contents,
query=sub_query,
max_tokens=max_tokens_allowed
)
print(f"Number of tokens in the answer: {token_count}")
print(f"Number of tokens in the content: {self.llm.get_num_tokens(contents)}")
else:
if depth == 0:
# Emit an event to indicate the failure of sub-query processing
await self.emit_event("sub_query_failed", {
"node_id": node_id,
"sub_query": sub_query,
"contents": contents
})
# Update node with data atomically
with self.transaction() as tx:
tx.run(
"""
MATCH (n:Node {id: $node_id})
SET n.data = $data
""",
node_id=node_id,
data=contents
)
# Set the result in the future
future.set_result(contents)
except Exception as e:
print(f"Error processing node {node_id}: {str(e)}")
future.set_exception(e)
raise
async def process_dependent_node(self, node_id: str, sub_query: str, depth, dep_futures: list, future):
"""Process a dependent node asynchronously."""
try:
loop = asyncio.get_running_loop()
# Wait for dependencies
dep_data = [await f for f in dep_futures]
# Modify query based on dependencies
modified_query = await self.query_processor.modify_query(
sub_query,
dep_data
)
# Generate new embedding for modified query
embedding = await loop.run_in_executor(
self.executor,
self.model.encode,
modified_query
)
# Update node query and embedding atomically
with self.transaction() as tx:
tx.run(
"""
MATCH (n:Node {id: $node_id})
SET n.query = $modified_query,
n.embedding = $embedding
""",
node_id=node_id,
modified_query=modified_query,
embedding=embedding.tolist()
)
# Process the modified node
try:
if not future.done():
await process_node(
self, node_id, modified_query, session_id, future, depth, max_tokens_allowed
)
except Exception as e:
if not future.done():
future.set_exception(e)
raise
except Exception as e:
print(f"Error processing dependent node {node_id}: {str(e)}")
if not future.done():
future.set_exception(e)
raise
def create_cross_connections(self, node_id=None, depth=None, role=None):
"""Create cross connections based on dependencies."""
try:
# Get all logical relationships
relationships = self.get_node_relationships(
node_id=node_id,
depth=depth,
role=role,
relationship_type='logical'
)
for current_node_id, edges in relationships.items():
# Get node role
with self.transaction() as tx:
result = tx.run(
"MATCH (n:Node {id: $node_id}) RETURN n.role as role",
node_id=current_node_id
)
node_data = result.single()
if not node_data or not node_data["role"]:
continue
node_role = node_data["role"].lower()
# Only process dependent nodes
if node_role == 'dependent':
# Process incoming edges (dependencies)
for source_id, target_id, edge_data in edges['in_edges']:
if not source_id or source_id == self.root_node_id:
continue
# Create connection key
connection = tuple(sorted([current_node_id, source_id]))
# Add cross-connection if not exists
if connection not in self.cross_connections:
if not self.edge_exists(source_id, current_node_id):
print(f"Adding cross-connection edge between {source_id} and {current_node_id}")
self.add_edge(
source_id,
current_node_id,
weight=edge_data.get('weight', 1.0),
relationship_type='logical'
)
self.cross_connections.add(connection)
# Process outgoing edges (children)
for source_id, target_id, edge_data in edges['out_edges']:
if not target_id or target_id == self.root_node_id:
continue
# Create connection key
connection = tuple(sorted([current_node_id, target_id]))
# Add cross-connection if not exists
if connection not in self.cross_connections:
if not self.edge_exists(current_node_id, target_id):
print(f"Adding cross-connection edge between {current_node_id} and {target_id}")
self.add_edge(
current_node_id,
target_id,
weight=edge_data.get('weight', 1.0),
relationship_type='logical'
)
self.cross_connections.add(connection)
except Exception as e:
print(f"Error creating cross connections: {str(e)}")
raise
# Main build_graph implementation
# Limit recursion depth
if depth > 1:
return
# Initialize context if not provided
if context is None:
context = []
# Dictionary to keep track of node data and their futures
node_data_futures = {}
if parent_node_id is None:
# If no parent node, this is the root (original query)
self.add_node(self.root_node_id, query, data)
parent_node_id = self.root_node_id
# Get the query intent
intent = await self.query_processor.get_query_intent(query)
if depth == 0:
# Decompose the query into sub-queries
response_data, sub_queries, roles, dependencies = \
await self.query_processor.decompose_query_with_dependencies(query, intent)
else:
# Decompose the sub-query into sub-sub-queries with past context
response_data, sub_queries, roles, dependencies = \
await self.query_processor.decompose_query_with_dependencies(
query,
intent,
context
)
# Add current query data to context for next iteration
if response_data:
context.append(response_data)
# If no further decomposition is possible, sub_queries will contain only the original query
if len(sub_queries) > 1 and sub_queries[0] != query:
sub_query_ids = []
pre_req_nodes = {}
# Create the structure (nodes and edges) of the graph at the current level
for idx, (sub_query, role, dependency) in enumerate(zip(sub_queries, roles, dependencies)):
# If this is the sub-queries level,
# fire the event, letting the callback know about the sub-query
if depth == 0:
await self.emit_event(
"sub_query_created",
{
"depth": depth,
"sub_query": sub_query,
"role": role,
"dependency": dependency,
"parent_node_id": parent_node_id,
}
)
# Generate a unique ID for the sub-query
if depth == 0:
self.node_counter += 1
sub_node_id = f"SQ{self.node_counter}"
else:
self.sub_node_counter += 1
sub_node_id = f"SSQ{self.sub_node_counter}"
# Add the node ID to the list of sub-query IDs
sub_query_ids.append(sub_node_id)
# Add the node to the graph but without a data
self.add_node(node_id=sub_node_id, query=sub_query, role=role)
# Create future for the node
future = asyncio.Future()
node_data_futures[sub_node_id] = future
if role.lower() in ('pre-requisite', 'prerequisite'):
pre_req_nodes[idx] = sub_node_id
# Determine how to add edges based on the role
if role.lower() in ('pre-requisite', 'prerequisite', 'independent'):
# Pre-requisite and Independent nodes connect directly to the parent
self.add_edge(parent_node_id, sub_node_id, relationship_type='hierarchical')
elif role.lower() == 'dependent':
if isinstance(dependency, list) and (
(len(dependency) == 2 and all(isinstance(d, list) for d in dependency))
):
print(f"Dependency: {dependency}")
# Handle previous query dependencies
prev_deps, current_deps = dependency
# Handle previous query dependencies
if context and prev_deps not in [None, []]:
for dep_idx in prev_deps:
if dep_idx is not None:
# Find the corresponding context data
for context_data in context:
if context_data and 'subqueries' in context_data:
if dep_idx < len(context_data['subqueries']):
# Get the query from context
sub_query_data = context_data['subqueries'][dep_idx]
if isinstance(sub_query_data, dict) and 'subquery' in sub_query_data:
dep_query = sub_query_data['subquery']
# Find matching nodes
matching_nodes = self.find_nodes_by_properties(query=dep_query)
# Get the best matching node ID and score
if matching_nodes not in [None, []]:
dep_node_id = matching_nodes[0].get('node_id')
score = matching_nodes[0].get('score', 0)
if score >= 0.9:
self.add_edge(dep_node_id, sub_node_id, relationship_type='logical')
# Add edges from current query dependencies
if current_deps not in [None, []]:
for dep_idx in current_deps:
if dep_idx < len(sub_queries):
dep_node_id = sub_query_ids[dep_idx]
self.add_edge(dep_node_id, sub_node_id, relationship_type='logical')
else:
# Dependency is incorrect
raise ValueError(f"Invalid dependency index: {dep_idx}")
elif len(dependency) > 0:
for dep_idx in dependency:
if dep_idx < len(sub_queries):
# Get the node ID of the dependency
dep_node_id = sub_query_ids[dep_idx]
# Add an edge from the dependency to the current sub-query
self.add_edge(dep_node_id, sub_node_id, relationship_type='logical')
else:
raise ValueError(f"Invalid dependency index: {dep_idx}")
else:
# Dependency is incorrect or empty
raise ValueError(f"Invalid dependency: {dependency}")
else:
# Handle any unexpected roles
raise ValueError(f"Unexpected role: {role}")
# Proceed to process the nodes
tasks = []
# Process pre-requisite and independent nodes concurrently
for idx in range(len(sub_queries)):
node_id = sub_query_ids[idx]
future = node_data_futures[node_id]
if roles[idx].lower() in ('pre-requisite', 'prerequisite', 'independent'):
tasks.append(process_node(
self, node_id, sub_queries[idx], session_id, future, depth, max_tokens_allowed
))
# Process dependent nodes as soon as their dependencies are ready
for idx in range(len(sub_queries)):
node_id = sub_query_ids[idx]
future = node_data_futures[node_id]
if roles[idx].lower() == 'dependent':
dep_futures = []
if isinstance(dependencies[idx], list) and len(dependencies[idx]) == 2:
prev_deps, current_deps = dependencies[idx]
# Get futures from previous context dependencies
if context and prev_deps not in [None, []]:
for context_idx, context_data in enumerate(context):
# If prev_deps is a list, process the corresponding dependency
if isinstance(prev_deps, list) and context_idx < len(prev_deps):
context_dep = prev_deps[context_idx]
if context_dep is not None:
if context_data and 'subqueries' in context_data:
if context_dep < len(context_data['subqueries']):
sub_query_data = context_data['subqueries'][context_dep]
if isinstance(sub_query_data, dict) and 'subquery' in sub_query_data:
dep_query = sub_query_data['subquery']
# Find matching nodes
matching_nodes = self.find_nodes_by_properties(query=dep_query)
if matching_nodes not in [None, []]:
# Get the exact matching node ID and score
dep_node_id = matching_nodes[0].get('node_id', None)
score = float(matching_nodes[0].get('score', 0))
if score == 1.0 and dep_node_id in node_data_futures:
dep_futures.append(node_data_futures[dep_node_id])
# If prev_deps is an integer, process it for the current context
elif isinstance(prev_deps, int):
if prev_deps < len(context_data['subqueries']):
sub_query_data = context_data['subqueries'][prev_deps]
if isinstance(sub_query_data, dict) and 'subquery' in sub_query_data:
dep_query = sub_query_data['subquery']
# Find matching nodes
matching_nodes = self.find_nodes_by_properties(query=dep_query)
if matching_nodes not in [None, []]:
# Get the exact matching node ID and score
dep_node_id = matching_nodes[0].get('node_id', None)
score = matching_nodes[0].get('score', 0)
if score == 1.0 and dep_node_id in node_data_futures:
dep_futures.append(node_data_futures[dep_node_id])
# Get futures from current dependencies
if current_deps not in [None, []]:
current_deps_list = [current_deps] if isinstance(current_deps, int) else current_deps
for dep_idx in current_deps_list:
if dep_idx < len(sub_queries):
dep_node_id = sub_query_ids[dep_idx]
if dep_node_id in node_data_futures:
dep_futures.append(node_data_futures[dep_node_id])
# Start coroutine to wait for dependencies and then process node
tasks.append(process_dependent_node(
self, node_id, sub_queries[idx], depth, dep_futures, future
))
# Emit an event to indicate the start of the search process
if depth == 0:
await self.emit_event("search_process_started", {
"depth": depth,
"sub_queries": sub_queries,
"roles": roles
})
# Wait for all tasks to complete
await asyncio.gather(*tasks)
# Recurse into sub-queries if needed
if recurse:
recursion_tasks = []
for idx, sub_query in enumerate(sub_queries):
try:
sub_node_id = sub_query_ids[idx]
recursion_tasks.append(
self.build_graph(
query=sub_query,
parent_node_id=sub_node_id,
depth=depth + 1,
threshold=threshold,
recurse=recurse,
context=context, # Pass the context
session_id=session_id
))
except Exception as e:
print(f"Failed to create recursion task for sub-query {sub_query}: {e}")
continue
# Only proceed if there are any recursion tasks
if recursion_tasks:
try:
await asyncio.gather(*recursion_tasks)
except Exception as e:
raise Exception(f"Error during recursive processing: {e}")
# Process completion tasks
if depth == 0:
print("Graph building complete, processing final tasks...")
# Create cross-connections
create_cross_connections(self)
print("All cross-connections have been created!")
# Add similarity-based edges
print(f"Adding similarity edges with threshold {threshold}")
all_nodes = []
with self.driver.session() as session:
result = session.run(
"MATCH (n:Node) WHERE n.id <> $root_id RETURN n.id as id",
root_id=self.root_node_id
)
all_nodes = [record["id"] for record in result]
for i, node1 in enumerate(all_nodes):
for node2 in all_nodes[i+1:]:
if not self.edge_exists(node1, node2):
self.add_edge_based_on_similarity_and_relevance(
node1, node2, query, threshold
)
async def process_graph(
self,
query: str,
data: str = None,
similarity_threshold: float = 0.8,
relevance_threshold: float = 0.7,
sub_sub_queries: bool = True,
session_id: str = None,
max_tokens_allowed: int = 128000
):
"""Process a query and manage graph creation/modification."""
# Inner function to check similarity between new query and existing queries in the graph
def check_query_similarity(new_query: str, similarity_threshold: float = 0.8) -> Dict[str, Any]:
if self.current_graph_id is None:
raise Exception("Error: No current graph ID. Cannot check query similarity.")
try:
# Get all existing queries of the current graph and their metadata from Neo4j
print(f"Retrieving existing queries and their metadata for graph {self.current_graph_id}")
with self.transaction() as tx:
result = tx.run("""
MATCH (n:Node)
WHERE n.graph_id IS NOT NULL
AND n.graph_id = $graph_id
RETURN n.id as id,
n.query as query,
n.role as role
""",
graph_id=self.current_graph_id
)
# Process results and calculate similarities
similarities = []
records = list(result) # Materialize results to avoid session timeout
if records == []: # No existing queries
return {"should_create_new": True}
for record in records:
# Skip if missing required data
if not all([record["query"]]):
continue
# Calculate query similarity
similarity = self.calculate_query_similarity(
new_query,
record["query"]
)
if similarity >= similarity_threshold:
similarities.append({
"node_id": record["id"],
"query": record["query"],
"score": similarity,
"role": record["role"]
})
# If no similar queries found
if similarities == []:
print(f"No similar queries found above threshold {similarity_threshold}")
return {"should_create_new": True}
# Find best match
best_match = max(similarities, key=lambda x: x["score"])
# Determine relationship type based on node ID pattern
rel_type = "root"
if "SSQ" in best_match["node_id"]:
rel_type = "sub-sub"
elif "SQ" in best_match["node_id"]:
rel_type = "sub"
return {
"most_similar_query": best_match["query"],
"similarity_score": best_match["score"],
"relationship_type": rel_type,
"node_id": best_match["node_id"],
"should_create_new": best_match["score"] < similarity_threshold
}
except Exception as e:
print(f"Error checking query similarity: {str(e)}")
raise
try:
# Check if a graph already exists
print("Checking for existing graphs...")
result = self.get_graphs()
graphs = list(result)
if graphs == []: # No existing graphs
print("No existing graphs found. Creating new graph.")
self.create_new_graph()
# Emit event for creating a new graph
await self.emit_event("graph_operation", {"operation_type": "creating_new_graph"})
await self.build_graph(
query=query,
data=data,
threshold=relevance_threshold,
recurse=sub_sub_queries,
session_id=session_id,
max_tokens_allowed=max_tokens_allowed
)
# Memory cleanup
gc.collect()
# Prune edges and update pagerank
self.prune_edges()
self.update_pagerank()
# Verify graph integrity and consistency
self.verify_graph_integrity()
self.verify_graph_consistency()
return
# Check similarity with existing root queries
max_similarity = 0
most_similar_graph = None
# First, consolidate nodes from graphs with same ID
consolidated_graphs = {}
for graph in graphs:
graph_info = graph.get("graph_info")
if not graph_info:
continue
graph_id = graph_info.get("graph_id")
if not graph_id:
continue
# Initialize or append nodes for this graph_id
if graph_id not in consolidated_graphs:
consolidated_graphs[graph_id] = {
"graph_id": graph_id,
"nodes": []
}
# Add nodes if they exist
if graph_info.get("nodes"):
consolidated_graphs[graph_id]["nodes"].extend(graph_info["nodes"])
# Now process the consolidated graphs
for graph_id, graph_data in consolidated_graphs.items():
nodes = graph_data["nodes"]
# Calculate similarity with each node's query
for node in nodes:
if node.get("query"): # Skip nodes without queries
similarity = self.calculate_query_similarity(
query,
node["query"]
)
if node.get("id").startswith("SQ"):
await self.emit_event("retrieved_sub_query", {
"sub_query": node["query"]
})
if similarity > max_similarity:
max_similarity = similarity
most_similar_graph = graph_id
if max_similarity >= similarity_threshold:
# Use existing graph
print(f"Found similar query with score {round(max_similarity, 2)}")
self.current_graph_id = most_similar_graph
if round(max_similarity, 2) == 1.0:
print("Loading and using existing graph")
# Emit event for loading an existing graph
await self.emit_event("graph_operation", {"operation_type": "loading_existing_graph"})
success = self.load_graph(self.root_node_id)
if not success:
raise Exception("Failed to load existing graph")
else:
# Check for node-level similarity
print("Checking for node-level similarity...")
similarity_info = check_query_similarity(
query,
similarity_threshold
)
if similarity_info["relationship_type"] in ["sub", "sub-sub"]:
print(f"Most Similar Query: {similarity_info['most_similar_query']}")
print("Modifying existing graph structure")
# Emit event for modifying the graph
await self.emit_event("graph_operation", {"operation_type": "modifying_existing_graph"})
await self.modify_graph(
query,
similarity_info["node_id"],
session_id=session_id
)
# Memory cleanup
gc.collect()
# Prune edges and update pagerank
self.prune_edges()
self.update_pagerank()
# Verify graph integrity and consistency
self.verify_graph_integrity()
self.verify_graph_consistency()
else:
# Create new graph
print(f"Creating new graph for query: {query}")
self.create_new_graph()
# Emit event for creating a new graph
await self.emit_event("graph_operation", {"operation_type": "creating_new_graph"})
await self.build_graph(
query=query,
data=data,
threshold=relevance_threshold,
recurse=sub_sub_queries,
session_id=session_id,
max_tokens_allowed=max_tokens_allowed
)
# Memory cleanup
gc.collect()
# Prune edges and update pagerank
self.prune_edges()
self.update_pagerank()
# Verify graph integrity and consistency
self.verify_graph_integrity()
self.verify_graph_consistency()
except Exception as e:
print(f"Error in process_graph: {str(e)}")
raise
def add_edge_based_on_similarity_and_relevance(self, node1_id: str, node2_id: str, query: str, threshold: float = 0.8):
"""Add edges based on node similarity and relevance."""
try:
with self.transaction() as tx:
# Get node data atomically
result = tx.run(
"""
MATCH (n1:Node {id: $node1_id})
WITH n1
MATCH (n2:Node {id: $node2_id})
RETURN n1.embedding as emb1, n1.data as data1,
n2.embedding as emb2, n2.data as data2
""",
node1_id=node1_id,
node2_id=node2_id
)
data = result.single()
if not data or not all([data["emb1"], data["emb2"], data["data1"], data["data2"]]):
return
# Calculate similarities and relevance
similarity = self.cosine_similarity(data["emb1"], data["emb2"])
query_relevance1 = self.calculate_relevance(query, data["data1"])
query_relevance2 = self.calculate_relevance(query, data["data2"])
node_relevance = self.calculate_relevance(data["data1"], data["data2"])
# Calculate weight
weight = (similarity + query_relevance1 + query_relevance2 + node_relevance) / 4
# Add edge if weight exceeds threshold
if weight >= threshold:
tx.run(
"""
MATCH (a:Node {id: $node1_id}), (b:Node {id: $node2_id})
MERGE (a)-[r:RELATION {type: 'similarity_and_relevance'}]->(b)
ON CREATE SET r.weight = $weight
ON MATCH SET r.weight = $weight
""",
node1_id=node1_id,
node2_id=node2_id,
weight=weight
)
print(f"Added edge between {node1_id} and {node2_id} with type similarity_and_relevance and weight {weight}")
except Exception as e:
print(f"Error in similarity edge creation between {node1_id} and {node2_id}: {str(e)}")
raise
def calculate_relevance(self, data1: str, data2: str) -> float:
"""Calculate relevance between two data."""
try:
if not data1 or not data2:
return 0.0
P, R, F1 = self.scorer.score([data1], [data2])
return F1.mean().item()
except Exception as e:
print(f"Error calculating relevance: {str(e)}")
return 0.0
def calculate_query_similarity(self, query1: str, query2: str) -> float:
"""Calculate similarity between two queries."""
try:
# Generate embeddings
embedding1 = self.model.encode(query1).tolist()
embedding2 = self.model.encode(query2).tolist()
# Calculate cosine similarity
return self.cosine_similarity(embedding1, embedding2)
except Exception as e:
print(f"Error calculating query similarity: {str(e)}")
return 0.0
def get_similarities_and_relevance(self, threshold: float = 0.8) -> list:
"""Get similarities and relevance between nodes."""
try:
with self.transaction() as tx:
# Get all nodes except root
result = tx.run(
"""
MATCH (n:Node)
WHERE n.id <> $root_id
RETURN n.id as id, n.embedding as embedding, n.data as data
""",
root_id=self.root_node_id
)
nodes = list(result)
similarities = []
# Calculate similarities between each pair
for i, node1 in enumerate(nodes):
for node2 in nodes[i + 1:]:
similarity = self.cosine_similarity(node1["embedding"], node2["embedding"])
relevance = self.calculate_relevance(node1["data"], node2["data"])
# Calculate weight
weight = (similarity + relevance) / 2
# Add to results if meets threshold
if weight >= threshold:
similarities.append({
'node1': node1["id"],
'node2': node2["id"],
'similarity': similarity,
'relevance': relevance,
'weight': weight
})
return similarities
except Exception as e:
print(f"Error getting similarities and relevance: {str(e)}")
return []
def get_node_relationships(self, node_id=None, depth=None, role=None, relationship_type=None):
"""Get relationships between nodes with filtering options."""
try:
with self.transaction() as tx:
# Build base query
cypher_query = """
MATCH (n:Node)
WHERE n.id <> $root_id
AND n.graph_id = $current_graph_id
"""
params = {
"root_id": self.root_node_id,
"current_graph_id": self.current_graph_id
}
# Add filters
if node_id:
cypher_query += " AND n.id = $node_id"
params["node_id"] = node_id
if role:
cypher_query += " AND n.role = $role"
params["role"] = role
if depth is not None:
cypher_query += " AND n.depth = $depth"
params["depth"] = depth
# First get outgoing relationships
cypher_query += """
WITH n
OPTIONAL MATCH (n)-[r1:RELATION]->(m1:Node)
WHERE m1.id <> $root_id
AND m1.graph_id = $current_graph_id
"""
# Add relationship type filter if specified
if relationship_type:
cypher_query += " AND r1.type = $rel_type"
params["rel_type"] = relationship_type
# Then get incoming relationships in a separate match
cypher_query += """
WITH n, collect({source: n.id, target: m1.id, weight: r1.weight, type: r1.type}) as out_edges
OPTIONAL MATCH (n)<-[r2:RELATION]-(m2:Node)
WHERE m2.id <> $root_id
AND m2.graph_id = $current_graph_id
"""
# Add same relationship type filter for incoming edges
if relationship_type:
cypher_query += " AND r2.type = $rel_type"
# Return both collections
cypher_query += """
RETURN n.id as node_id,
collect({source: m2.id, target: n.id, weight: r2.weight, type: r2.type}) as in_edges,
out_edges
"""
result = tx.run(cypher_query, params)
relationships = {}
for record in result:
node_id = record["node_id"]
relationships[node_id] = {
'in_edges': [(edge['source'], edge['target'], {
'weight': edge['weight'],
'type': edge['type']
}) for edge in record["in_edges"] if edge['source'] is not None],
'out_edges': [(edge['source'], edge['target'], {
'weight': edge['weight'],
'type': edge['type']
}) for edge in record["out_edges"] if edge['target'] is not None]
}
return relationships
except Exception as e:
print(f"Error getting node relationships: {str(e)}")
raise
def find_nodes_by_properties(self, query: str = None, embedding: list = None,
node_data: dict = None, similarity_threshold: float = 0.8) -> list:
"""Find nodes based on properties."""
try:
with self.transaction() as tx:
match_conditions = []
where_conditions = []
params = {}
# Build query conditions
if query:
where_conditions.append("n.query CONTAINS $node_query")
params["node_query"] = query
if node_data:
for key, value in node_data.items():
where_conditions.append(f"n.{key} = ${key}")
params[key] = value
# Construct the base query
cypher_query = "MATCH (n:Node)"
if where_conditions:
cypher_query += " WHERE " + " AND ".join(where_conditions)
cypher_query += " RETURN n"
result = tx.run(cypher_query, params)
matching_nodes = []
# Process results and calculate similarities
for record in result:
node = record["n"]
match_score = 0
matches = 0
# Score based on property matches
if query and query.lower() in node["query"].lower():
match_score += 1
matches += 1
# Score based on embedding similarity
if embedding and "embedding" in node:
similarity = self.cosine_similarity(embedding, node["embedding"])
if similarity >= similarity_threshold:
match_score += similarity
matches += 1
# Score based on node_data matches
if node_data:
data_matches = sum(1 for k, v in node_data.items()
if k in node and node[k] == v)
if data_matches > 0:
match_score += data_matches / len(node_data)
matches += 1
# Add to results if any match found
if matches > 0:
matching_nodes.append({
"node_id": node["id"],
"score": match_score / matches,
"data": dict(node)
})
# Sort by score
matching_nodes.sort(key=lambda x: x["score"], reverse=True)
return matching_nodes
except Exception as e:
print(f"Error finding nodes by properties: {str(e)}")
raise
def query_graph(self, query: str) -> str:
"""Query the graph in Neo4j for a specific query, collecting data from the entire relevant subgraph."""
try:
with self.transaction() as tx:
# Find the query node
query_node = tx.run("""
MATCH (n:Node {query: $node_query})
WHERE n.graph_id = $graph_id
RETURN n
""", node_query=query, graph_id=self.current_graph_id).single()
if not query_node:
raise ValueError(f"Query node not found for: {query}")
query_node_id = query_node['n']['id']
datas = []
# Get entire subgraph including all relationship types and independent nodes
subgraph_paths = tx.run("""
// First get the query node and all its connected paths
MATCH path = (n:Node {id: $node_id})-[r:RELATION*0..]->(m:Node)
WHERE n.graph_id = $graph_id
// Collect all nodes and relationships in these paths
WITH COLLECT(path) as paths
UNWIND paths as path
WITH DISTINCT path
// Get all nodes and relationships from the paths
WITH nodes(path) as nodes, relationships(path) as rels
// Calculate path weight considering all relationship types
WITH nodes, rels,
reduce(weight = 1.0, rel in rels |
CASE rel.type
WHEN 'logical' THEN weight * rel.weight * 1.2
WHEN 'hierarchical' THEN weight * rel.weight * 1.1
WHEN 'similarity_and_relevance' THEN weight * rel.weight * 0.9
ELSE weight * rel.weight
END
) as path_weight
// Unwind nodes to get individual records
UNWIND nodes as node
WITH DISTINCT node, path_weight
WHERE node.data IS NOT NULL
AND node.data <> '' // Ensure data is not empty
// Return ordered by weight and pagerank for better context flow
RETURN node.data as data,
path_weight,
node.role as role,
node.pagerank as pagerank
ORDER BY
CASE node.role
WHEN 'pre-requisite' THEN 3
WHEN 'independent' THEN 2
ELSE 1
END DESC,
path_weight DESC,
pagerank DESC
""", node_id=query_node_id, graph_id=self.current_graph_id)
# Collect data in the order they were returned (already optimally sorted)
for record in subgraph_paths:
data = record["data"]
if data and isinstance(data, str):
datas.append(data.strip())
# If no data are found, return an empty string
if datas == []:
print(f"No data found for: {query}")
return ""
# Return combined data
return "\n\n".join([f"Data {i+1}:\n{data}" for i, data in enumerate(datas)])
except Exception as e:
print(f"Error querying graph for specific query: {str(e)}")
raise
def prune_edges(self, max_edges: int = 1000):
"""Prune excess edges while preserving node data."""
try:
with self.transaction() as tx:
try:
# Count current edges
result = tx.run(
"""
MATCH (a:Node {graph_id: $graphID})-[r:RELATION]->(b:Node {graph_id: $graphID})
RETURN count(r) AS count
""",
graphID=self.current_graph_id
)
current_edges = result.single()["count"]
if current_edges > max_edges:
# Mark edges to keep
tx.run(
"""
MATCH (a:Node {graph_id: $graphID})-[r:RELATION]->(b:Node {graph_id: $graphID})
WITH r
ORDER BY r.weight DESC
LIMIT $max_edges
SET r:KEEP
""",
graphID=self.current_graph_id,
max_edges=max_edges
)
# Remove excess edges
tx.run(
"""
MATCH (a:Node {graph_id: $graphID})-[r:RELATION]->(b:Node {graph_id: $graphID})
WHERE NOT r:KEEP
DELETE r
""",
graphID=self.current_graph_id
)
# Remove temporary label
tx.run(
"""
MATCH (a:Node {graph_id: $graphID})-[r:KEEP]->(b:Node {graph_id: $graphID})
REMOVE r:KEEP
""",
graphID=self.current_graph_id
)
tx.commit()
print(f"Pruned edges. Kept top {max_edges} edges by weight.")
except Exception as e:
tx.rollback()
raise e
except Exception as e:
print(f"Error pruning edges: {str(e)}")
raise
def update_pagerank(self):
"""Update PageRank values using Neo4j's graph algorithms."""
if not self.current_graph_id:
print("No current graph selected. Cannot compute PageRank.")
return
try:
with self.transaction() as tx:
# Create graph projection with weighted relationships
tx.run(
"""
CALL gds.graph.project.cypher(
'graphProjection',
'MATCH (n:Node) WHERE n.graph_id = $myParam RETURN id(n) AS id',
'MATCH (n:Node)-[r:RELATION]->(m:Node)
WHERE n.graph_id = $myParam AND m.graph_id = $myParam
RETURN id(n) AS source,
id(m) AS target,
CASE r.type
WHEN "logical" THEN r.weight * 2
ELSE r.weight
END AS weight',
{ parameters: { myParam: $graphId } }
)
""",
graphId=self.current_graph_id
)
# Run PageRank with relationship weights
tx.run(
"""
CALL gds.pageRank.write(
'graphProjection',
{
relationshipWeightProperty: 'weight',
writeProperty: 'pagerank',
maxIterations: 20,
dampingFactor: 0.85,
concurrency: 4
}
)
"""
)
# Clean up projection
tx.run(
"""
CALL gds.graph.drop('graphProjection')
"""
)
print("PageRank updated successfully")
except Exception as e:
print(f"Error updating PageRank: {str(e)}")
raise
def display_graph(self, query: str):
"""Display the graph"""
try:
with self.transaction() as tx:
# 1. Find the graph_id(s) of the node using the provided query
cypher_query = """
MATCH (n:Node)
WHERE n.query = $node_query
RETURN COLLECT(DISTINCT n.graph_id) AS graph_ids
"""
result = tx.run(cypher_query, node_query=query)
graph_ids = result.single().get("graph_ids", [])
if not graph_ids:
print("No graph found for the given query.")
return
# Create the PyVis network once, so we can add all data to it:
net = Network(
height="600px",
width="100%",
directed=True,
bgcolor="#222222",
font_color="white"
)
# Disable physics initially
net.options = {"physics": {"enabled": False}}
all_nodes = set()
all_edges = []
for graph_id in graph_ids:
# 2. Fetch Graph Data for this graph_id
result = tx.run(f"MATCH (n)-[r]->(m) WHERE n.graph_id = '{graph_id}' RETURN n, r, m")
for record in result:
source_node = record["n"]
target_node = record["m"]
relationship = record["r"]
source_id = source_node.get("id")
target_id = target_node.get("id")
# Build a descriptive tooltip for each node
source_tooltip = (
f"Query: {source_node.get('query', 'N/A')}"
)
target_tooltip = (
f"Query: {target_node.get('query', 'N/A')}"
)
# Add source node if not already in the set
if source_id not in all_nodes:
net.add_node(
source_id,
label=source_id,
title=source_tooltip,
size=20,
color="#00cc66"
)
all_nodes.add(source_id)
# Add target node if not already in the set
if target_id not in all_nodes:
net.add_node(
target_id,
label=target_id,
title=target_tooltip,
size=20,
color="#00cc66"
)
all_nodes.add(target_id)
# Add edge
all_edges.append({
"from": source_id,
"to": target_id,
"label": relationship.type,
})
# Add all edges
for edge in all_edges:
net.add_edge(
edge["from"],
edge["to"],
title=edge["label"],
color="#cccccc"
)
# 4. Enable improved layout and dragNodes
net.options["layout"] = {"improvedLayout": True}
net.options["interaction"] = {"dragNodes": True}
# 5. Save to a temporary file, read it, then remove that file
net.save_graph("temp_graph.html")
with open("temp_graph.html", "r", encoding="utf-8") as f:
html_str = f.read()
os.remove("temp_graph.html") # Clean up the temp file
return html_str
except Exception as e:
print(f"Error displaying graph: {str(e)}")
raise
def verify_graph_integrity(self):
"""Verify and fix graph integrity issues."""
try:
with self.transaction() as tx:
# Check for orphaned nodes
orphaned = tx.run(
"""
MATCH (n:Node {graph_id: $graph_id})
WHERE NOT (n)-[:RELATION]-()
RETURN n.id as node_id
""",
graph_id=self.current_graph_id
).values()
if orphaned:
print(f"Found orphaned nodes: {orphaned}")
# Check for invalid edges
invalid_edges = tx.run(
"""
MATCH (a:Node)-[r:RELATION]->(b:Node)
WHERE a.graph_id = $graph_id
AND (b.graph_id <> $graph_id OR b.graph_id IS NULL)
RETURN a.id as from_id, b.id as to_id
""",
graph_id=self.current_graph_id
).values()
if invalid_edges:
print(f"Found invalid edges: {invalid_edges}")
# Optionally fix issues
tx.run(
"""
MATCH (a:Node)-[r:RELATION]->(b:Node)
WHERE a.graph_id = $graph_id
AND (b.graph_id <> $graph_id OR b.graph_id IS NULL)
DELETE r
""",
graph_id=self.current_graph_id
)
print("Graph integrity verified successfully")
return True
except Exception as e:
print(f"Error verifying graph integrity: {str(e)}")
raise
def verify_graph_consistency(self):
"""Verify consistency of the Neo4j graph."""
try:
with self.driver.session() as session:
# Check for nodes without required properties
missing_props = session.run("""
MATCH (n:Node)
WHERE n.id IS NULL OR n.query IS NULL
RETURN count(n) as count
""")
if missing_props.single()["count"] > 0:
raise ValueError("Found nodes with missing required properties")
# Check for relationship consistency
invalid_rels = session.run("""
MATCH ()-[r:RELATION]->()
WHERE r.type IS NULL OR r.weight IS NULL
RETURN count(r) as count
""")
if invalid_rels.single()["count"] > 0:
raise ValueError("Found relationships with missing required properties")
print("Graph consistency verified successfully")
return True
except Exception as e:
print(f"Error verifying graph consistency: {str(e)}")
raise
async def close(self):
"""Properly cleanup all resources."""
try:
# Shutdown executor
if hasattr(self, 'executor'):
self.executor.shutdown(wait=True)
# Close Neo4j driver
if hasattr(self, 'driver'):
self.driver.close()
# Cleanup crawler resources and browser contexts
if hasattr(self, 'crawler'):
await asyncio.shield(self.crawler.cleanup_expired_sessions())
await asyncio.shield(self.crawler.cleanup_browser_context(self.session_id))
except Exception as e:
print(f"Error during cleanup: {e}")
@staticmethod
def cosine_similarity(v1: List[float], v2: List[float]) -> float:
"""Calculate cosine similarity between two vectors."""
try:
v1_array = np.array(v1)
v2_array = np.array(v2)
return np.dot(v1_array, v2_array) / (np.linalg.norm(v1_array) * np.linalg.norm(v2_array))
except Exception as e:
print(f"Error calculating cosine similarity: {str(e)}")
return 0.0
if __name__ == "__main__":
import os
from dotenv import load_dotenv
from src.reasoning.reasoner import Reasoner
from src.evaluation.evaluator import Evaluator
load_dotenv()
graph_search = Neo4jGraphRAG(num_workers=24)
evaluator = Evaluator()
reasoner = Reasoner()
async def test_graph_search():
# Sample data for testing
queries = [
"""In the context of global economic recovery and energy security concerns, provide an in-depth comparative assessment of the renewable energy policies among G20 countries.
Specifically, examine how short-term economic stimulus measures intersect with long-term decarbonization commitments, including:
1. Carbon pricing mechanisms
2. Subsidies for emerging technologies (such as green hydrogen and battery storage)
3. Cross-border climate finance initiatives
Highlight the unique challenges faced by both advanced and emerging economies in addressing:
1. Energy poverty
2. Supply chain disruptions
3. Geopolitical tensions (e.g., the Russia-Ukraine conflict)
Discuss how these factors influence policy effectiveness, and evaluate the degree to which each country is on track to meet—or exceed—its Paris Agreement targets.
Note any significant policy gaps, regional collaborations, or innovative best practices.
Lastly, provide a forward-looking perspective on how these renewable energy strategies may evolve over the next decade, considering:
1. Technological breakthroughs
2. Global market trends
3. Potential climate-related disasters
Present your analysis as a detailed, well-formatted report.""",
"""Analyse the impact of 'hot-money' on the value of Indian Rupee and answer the following questions:-
1. How does it affect the exchange rate?
2. How can it be mitigated/eliminated?
3. Why is it a problem?
4. What are the consequences?
5. What are the alternatives?
- Evaluate the alternatives for pros and cons.
- Evaluate the impact of alternatives on the exchange rate.
- How can they be implemented?
- What are the consequences of each alternative?
- Evaluate the feasibility of the alternatives.
- Pick top 5 alternatives and justify your choices in detail.
6. What are the implications for the Indian economy? Furthermore:-
- Evaluate the impact of the chosen alternatives on the Indian economy.""",
"""Inflation has been an intrinsic past of human civilization since the very beginning. Answer the following questions:-
1. How true is the above statement?
2. What are the causes of inflation?
3. What are the consequences of inflation?
4. Can we completely eliminate inflation?""",
"""Perform a detailed comparison between the ancient Greece and Roman civilizations.
1. What were the key differences between the two civilizations?
- Evaluate the differences in governance, society, and culture
- Evaluate the differences in economy, trade, and military
- Evaluate the differences in technology and infrastructure
2. What were the similarities between the two civilizations?
- Evaluate the similarities in governance, society, and culture
- Evaluate the similarities in economy, trade, and military
- Evaluate the similarities in technology and infrastructure
3. How did these two civilizations influence each other?
- Evaluate the influence of one civilization on the other
4. How did these two civilizations influence the modern world?
5. Was there another civilization that influenced these two? If yes, how?""",
"""Evaluate the long-term effects of colonialism on economic development in Asia:-
1. Include case studies of at least five different countries
2. Analyze how these effects differ based on colonial power, time of independence, and resource distribution
- Evaluate the impact of colonialism on the economy of the country
- Evaluate the impact of colonialism on the economy of the region
- Evaluate the impact of colonialism on the economy of the world
3. How do these effects compare to Africa?"""
]
follow_on_queries = [
"How is 'hot-money' related to the current economic situation in India?",
"What is inflation?",
"Did ancient Greece and Rome have any impact on modern democracy? If yes, how?",
"Did colonialism have any impact on the trade between Africa and Asia, both in colonial and post-colonial times? If yes, how?"
]
query = queries[2]
# Initialize the database schema
graph_search.initialize_schema()
# Build the graph in Neo4j
await graph_search.process_graph(query, similarity_threshold=0.8, relevance_threshold=0.8)
# Query the graph and generate a response
answer = graph_search.query_graph(query)
response = ""
async for chunk in reasoner.reason(query, answer):
response += chunk
print(response, end="", flush=True)
# Display the graph
graph_search.display_graph(query)
# Evaluate the response
evaluation = await evaluator.evaluate_response(query, response, [answer])
print(f"Faithfulness: {evaluation['faithfulness']}")
print(f"Answer Relevancy: {evaluation['answer relevancy']}")
print(f"Context Utilization: {evaluation['contextual recall']}")
# Shutdown the executor after all tasks are complete
await graph_search.close()
# Run the test function
asyncio.run(test_graph_search()) |