Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,15 +10,37 @@ st.title('Spare-it Segmentation Model')
|
|
10 |
# Performance table data
|
11 |
st.header("Best Model Performance")
|
12 |
performance_data = {
|
13 |
-
"Class": [
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
}
|
21 |
|
|
|
22 |
df = pd.DataFrame(performance_data)
|
23 |
st.dataframe(df)
|
24 |
|
|
|
10 |
# Performance table data
|
11 |
st.header("Best Model Performance")
|
12 |
performance_data = {
|
13 |
+
"Class": [
|
14 |
+
"Paper Towel/Napkins/Tissue Paper", "Office Paper", "Snack or Candy Bag or Wrapper", "Metal Can",
|
15 |
+
"Clean Plastic Film", "Fruits And Veggies", "Clean Cardboard", "Plastic Lid except black",
|
16 |
+
"Empty Paper Bag", "Other Food or Mixed Food", "Paper Cup", "Plastic Drink Bottle", "Batteries",
|
17 |
+
"Plastic Straws", "Compostable Fiber Ware", "Clear Plastic Cup", "Sandwich paper wrapper",
|
18 |
+
"Filled Bag", "Wooden Coffee Stirrer or Utensil or Chopstick", "Shelf Stable Carton",
|
19 |
+
"Flexible container lid / seal", "Magazines/Newspaper", "Small Paper Packets", "Plastic Cutlery",
|
20 |
+
"Receipts and Thermal Paper", "Aluminum Foil", "Yogurt Tub or Container", "Cardboard Coffee Cup Sleeve",
|
21 |
+
"Tea Bags", "Colored Memo Note", "Clean Paper Plate", "Glass Bottles", "Metallic Bottle Cap or Lid",
|
22 |
+
"Compostable Cutlery", "Wrapping Paper", "Compostable Plastic Lid", "Plastic Milk Jug or Personal Care Bottle",
|
23 |
+
"Latex Gloves", "Shredded Paper", "Refrigerated Beverage Carton", "Liquids"
|
24 |
+
],
|
25 |
+
"Images": [906, 248, 870, 634, 427, 512, 304, 333, 487, 133, 215, 2655, 148, 184, 146, 86, 110, 63, 231, 30,
|
26 |
+
78, 26, 61, 22, 62, 451, 47, 32, 32, 41, 44, 49, 35, 37, 31, 32, 63, 17, 8],
|
27 |
+
"Instances": [1870, 562, 1662, 1560, 626, 928, 573, 373, 970, 196, 355, 3553, 164, 167, 196, 94, 172, 65, 655, 112,
|
28 |
+
132, 112, 72, 18, 71, 510, 51, 33, 34, 47, 54, 59, 44, 49, 39, 39, 74, 21, 8],
|
29 |
+
"Box(P)": [0.695, 0.652, 0.683, 0.856, 0.663, 0.71, 0.685, 0.675, 0.671, 0.628, 0.687, 0.835, 0.704, 0.747, 0.666,
|
30 |
+
0.704, 0.649, 0.705, 0.695, 0.585, 0.662, 0.643, 0.615, 0.601, 0.542, 0.757, 0.556, 0.283, 0.431, 0.326,
|
31 |
+
0.344, 0.451, 0.503, 0.354, 0.515, 0.662, 0.546, 0.603, 0.777, 0.954],
|
32 |
+
"Box(R)": [0.665, 0.58, 0.623, 0.922, 0.482, 0.607, 0.621, 0.589, 0.591, 0.421, 0.738, 0.859, 0.729, 0.729, 0.667,
|
33 |
+
0.682, 0.549, 0.566, 0.611, 0.463, 0.533, 0.633, 0.515, 0.507, 0.351, 0.705, 0.474, 0.354, 0.329, 0.305,
|
34 |
+
0.256, 0.617, 0.543, 0.433, 0.568, 0.617, 0.717, 0.581, 0.567, 0.357],
|
35 |
+
"Box(mAP50)": [0.726, 0.605, 0.615, 0.892, 0.542, 0.656, 0.626, 0.604, 0.597, 0.487, 0.687, 0.859, 0.729, 0.718, 0.686,
|
36 |
+
0.635, 0.569, 0.621, 0.651, 0.485, 0.584, 0.633, 0.511, 0.507, 0.384, 0.745, 0.524, 0.354, 0.321, 0.305,
|
37 |
+
0.257, 0.627, 0.444, 0.393, 0.568, 0.711, 0.467, 0.561, 0.744, 0.123],
|
38 |
+
"Mask(mAP50-95)": [0.462, 0.357, 0.411, 0.683, 0.314, 0.453, 0.391, 0.372, 0.367, 0.268, 0.437, 0.737, 0.523, 0.483, 0.437,
|
39 |
+
0.373, 0.318, 0.428, 0.435, 0.365, 0.385, 0.421, 0.321, 0.358, 0.283, 0.619, 0.351, 0.234, 0.212, 0.189,
|
40 |
+
0.147, 0.392, 0.318, 0.27, 0.391, 0.492, 0.248, 0.318, 0.587, 0.118],
|
41 |
}
|
42 |
|
43 |
+
|
44 |
df = pd.DataFrame(performance_data)
|
45 |
st.dataframe(df)
|
46 |
|