hengc commited on
Commit
2eb44b9
·
verified ·
1 Parent(s): 4cb9246

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -7
app.py CHANGED
@@ -10,15 +10,37 @@ st.title('Spare-it Segmentation Model')
10
  # Performance table data
11
  st.header("Best Model Performance")
12
  performance_data = {
13
- "Class": ["Paper Towel/Napkins/Tissue Paper", "Office Paper", "Snack or Candy Bag or Wrapper", "Metal Can", "Clean Plastic Film", "Fruits And Veggies", "Clean Cardboard", "Plastic Lid except black", "Empty Paper Bag", "Other Food or Mixed Food", "Paper Cup", "Plastic Drink Bottle", "Batteries", "Plastic Straws", "Compostable Fiber Ware", "Clear Plastic Cup", "Sandwich paper wrapper", "Filled Bag", "Wooden Coffee Stirrer or Utensil or Chopstick", "Shelf Stable Carton", "Flexible container lid / seal", "Magazines/Newspaper", "Small Paper Packets", "Plastic Cutlery", "Receipts and Thermal Paper", "Aluminum Foil", "Yogurt Tub or Container", "Cardboard Coffee Cup Sleeve", "Tea Bags", "Colored Memo Note", "Clean Paper Plate", "Glass Bottles", "Metallic Bottle Cap or Lid", "Compostable Cutlery", "Wrapping Paper", "Compostable Plastic Lid", "Plastic Milk Jug or Personal Care Bottle", "Latex Gloves", "Shredded Paper", "Refrigerated Beverage Carton", "Liquids"],
14
- "Images": [906, 248, 870, 634, 427, 512, 304, 333, 487, 133, 215, 2655, 148, 184, 146, 86, 110, 63, 231, 30, 78, 26, 61, 22, 62, 451, 47, 32, 32, 41, 44, 49, 35, 37, 31, 32, 63, 17, 8],
15
- "Instances": [1870, 562, 1662, 1560, 626, 928, 573, 373, 970, 196, 355, 3553, 164, 167, 196, 94, 172, 65, 655, 112, 132, 112, 72, 18, 71, 510, 51, 33, 34, 47, 54, 59, 44, 49, 39, 39, 74, 21, 8],
16
- "Box(P)": [0.695, 0.652, 0.683, 0.856, 0.663, 0.71, 0.685, 0.675, 0.671, 0.628, 0.687, 0.835, 0.704, 0.747, 0.666, 0.704, 0.649, 0.705, 0.695, 0.585, 0.662, 0.643, 0.615, 0.601, 0.542, 0.757, 0.556, 0.283, 0.431, 0.326, 0.344, 0.451, 0.503, 0.354, 0.515, 0.662, 0.546, 0.603, 0.777, 0.954],
17
- "Box(R)": [0.665, 0.58, 0.623, 0.922, 0.482, 0.607, 0.621, 0.589, 0.591, 0.421, 0.738, 0.859, 0.729, 0.729, 0.667, 0.682, 0.549, 0.566, 0.611, 0.463, 0.533, 0.633, 0.515, 0.507, 0.351, 0.705, 0.474, 0.354, 0.329, 0.305, 0.256, 0.617, 0.543, 0.433, 0.568, 0.617, 0.717, 0.581, 0.567, 0.357],
18
- "Box(mAP50)": [0.726, 0.605, 0.615, 0.892, 0.542, 0.656, 0.626, 0.604, 0.597, 0.487, 0.687, 0.859, 0.729, 0.718, 0.686, 0.635, 0.569, 0.621, 0.651, 0.485, 0.584, 0.633, 0.511, 0.507, 0.384, 0.745, 0.524, 0.354, 0.321, 0.305, 0.257, 0.627, 0.444, 0.393, 0.568, 0.711, 0.467, 0.561, 0.744, 0.123],
19
- "Mask(mAP50-95)": [0.462, 0.357, 0.411, 0.683, 0.314, 0.453, 0.391, 0.372, 0.367, 0.268, 0.437, 0.737, 0.523, 0.483, 0.437, 0.373, 0.318, 0.428, 0.435, 0.365, 0.385, 0.421, 0.321, 0.358, 0.283, 0.619, 0.351, 0.234, 0.212, 0.189, 0.147, 0.392, 0.318, 0.27, 0.391, 0.492, 0.248, 0.318, 0.587, 0.118],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  }
21
 
 
22
  df = pd.DataFrame(performance_data)
23
  st.dataframe(df)
24
 
 
10
  # Performance table data
11
  st.header("Best Model Performance")
12
  performance_data = {
13
+ "Class": [
14
+ "Paper Towel/Napkins/Tissue Paper", "Office Paper", "Snack or Candy Bag or Wrapper", "Metal Can",
15
+ "Clean Plastic Film", "Fruits And Veggies", "Clean Cardboard", "Plastic Lid except black",
16
+ "Empty Paper Bag", "Other Food or Mixed Food", "Paper Cup", "Plastic Drink Bottle", "Batteries",
17
+ "Plastic Straws", "Compostable Fiber Ware", "Clear Plastic Cup", "Sandwich paper wrapper",
18
+ "Filled Bag", "Wooden Coffee Stirrer or Utensil or Chopstick", "Shelf Stable Carton",
19
+ "Flexible container lid / seal", "Magazines/Newspaper", "Small Paper Packets", "Plastic Cutlery",
20
+ "Receipts and Thermal Paper", "Aluminum Foil", "Yogurt Tub or Container", "Cardboard Coffee Cup Sleeve",
21
+ "Tea Bags", "Colored Memo Note", "Clean Paper Plate", "Glass Bottles", "Metallic Bottle Cap or Lid",
22
+ "Compostable Cutlery", "Wrapping Paper", "Compostable Plastic Lid", "Plastic Milk Jug or Personal Care Bottle",
23
+ "Latex Gloves", "Shredded Paper", "Refrigerated Beverage Carton", "Liquids"
24
+ ],
25
+ "Images": [906, 248, 870, 634, 427, 512, 304, 333, 487, 133, 215, 2655, 148, 184, 146, 86, 110, 63, 231, 30,
26
+ 78, 26, 61, 22, 62, 451, 47, 32, 32, 41, 44, 49, 35, 37, 31, 32, 63, 17, 8],
27
+ "Instances": [1870, 562, 1662, 1560, 626, 928, 573, 373, 970, 196, 355, 3553, 164, 167, 196, 94, 172, 65, 655, 112,
28
+ 132, 112, 72, 18, 71, 510, 51, 33, 34, 47, 54, 59, 44, 49, 39, 39, 74, 21, 8],
29
+ "Box(P)": [0.695, 0.652, 0.683, 0.856, 0.663, 0.71, 0.685, 0.675, 0.671, 0.628, 0.687, 0.835, 0.704, 0.747, 0.666,
30
+ 0.704, 0.649, 0.705, 0.695, 0.585, 0.662, 0.643, 0.615, 0.601, 0.542, 0.757, 0.556, 0.283, 0.431, 0.326,
31
+ 0.344, 0.451, 0.503, 0.354, 0.515, 0.662, 0.546, 0.603, 0.777, 0.954],
32
+ "Box(R)": [0.665, 0.58, 0.623, 0.922, 0.482, 0.607, 0.621, 0.589, 0.591, 0.421, 0.738, 0.859, 0.729, 0.729, 0.667,
33
+ 0.682, 0.549, 0.566, 0.611, 0.463, 0.533, 0.633, 0.515, 0.507, 0.351, 0.705, 0.474, 0.354, 0.329, 0.305,
34
+ 0.256, 0.617, 0.543, 0.433, 0.568, 0.617, 0.717, 0.581, 0.567, 0.357],
35
+ "Box(mAP50)": [0.726, 0.605, 0.615, 0.892, 0.542, 0.656, 0.626, 0.604, 0.597, 0.487, 0.687, 0.859, 0.729, 0.718, 0.686,
36
+ 0.635, 0.569, 0.621, 0.651, 0.485, 0.584, 0.633, 0.511, 0.507, 0.384, 0.745, 0.524, 0.354, 0.321, 0.305,
37
+ 0.257, 0.627, 0.444, 0.393, 0.568, 0.711, 0.467, 0.561, 0.744, 0.123],
38
+ "Mask(mAP50-95)": [0.462, 0.357, 0.411, 0.683, 0.314, 0.453, 0.391, 0.372, 0.367, 0.268, 0.437, 0.737, 0.523, 0.483, 0.437,
39
+ 0.373, 0.318, 0.428, 0.435, 0.365, 0.385, 0.421, 0.321, 0.358, 0.283, 0.619, 0.351, 0.234, 0.212, 0.189,
40
+ 0.147, 0.392, 0.318, 0.27, 0.391, 0.492, 0.248, 0.318, 0.587, 0.118],
41
  }
42
 
43
+
44
  df = pd.DataFrame(performance_data)
45
  st.dataframe(df)
46