File size: 8,860 Bytes
30d2275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import torch
import torch.nn as nn

# basic

class Conv(nn.Module):
    # basic convlution
    def __init__(self, in_channels, out_channels, kernel_size,
                 stride=1, padding=0, dilation=1, groups=1, act=nn.ReLU(),
                 bias=False, auto_padding=True, padding_mode='zeros'):
        
        super().__init__()

        # not yet handle the case when dilation is a tuple
        if auto_padding:
            if isinstance(kernel_size, int):
                padding = (dilation * (kernel_size - 1) + 1) // 2
            else:
                padding = [(dilation * (k - 1) + 1) // 2 for k in kernel_size]

        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, groups=groups, dilation=dilation, bias=bias)
        self.bn = nn.BatchNorm2d(out_channels)
        self.act = act if isinstance(act, nn.Module) else nn.Identity()

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        return self.act(self.conv(x))

    # to be implement
    # def fuse_conv_bn(self):


# RepVGG

class RepConv(nn.Module):
    # https://github.com/DingXiaoH/RepVGG
    def __init__(self, in_channels, out_channels, kernel_size=3,
                 stride=1, groups=1, act=nn.ReLU()):

        super().__init__()

        self.conv1 = Conv(in_channels, out_channels, kernel_size, stride, groups=groups, act=False)
        self.conv2 = Conv(in_channels, out_channels, 1, stride, groups=groups, act=False)
        self.act = act if isinstance(act, nn.Module) else nn.Identity()

    def forward(self, x):
        return self.act(self.conv1(x) + self.conv2(x))

    def forward_fuse(self, x):
        return self.act(self.conv(x))

    # to be implement
    # def fuse_convs(self):


# ResNet

class Res(nn.Module):
    # ResNet bottleneck
    def __init__(self, in_channels, out_channels, 
                 groups=1, act=nn.ReLU(), ratio=0.25):

        super().__init__()

        h_channels = int(in_channels * ratio)
        self.cv1 = Conv(in_channels, h_channels, 1, 1, act=act)
        self.cv2 = Conv(h_channels, h_channels, 3, 1, groups=groups, act=act)
        self.cv3 = Conv(h_channels, out_channels, 1, 1, act=act)

    def forward(self, x):
        return x + self.cv3(self.cv2(self.cv1(x)))


class RepRes(nn.Module):
    # RepResNet bottleneck
    def __init__(self, in_channels, out_channels, 
                 groups=1, act=nn.ReLU(), ratio=0.25):

        super().__init__()

        h_channels = int(in_channels * ratio)
        self.cv1 = Conv(in_channels, h_channels, 1, 1, act=act)
        self.cv2 = RepConv(h_channels, h_channels, 3, 1, groups=groups, act=act)
        self.cv3 = Conv(h_channels, out_channels, 1, 1, act=act)

    def forward(self, x):
        return x + self.cv3(self.cv2(self.cv1(x)))


class ConvBlock(nn.Module):
    # ConvBlock
    def __init__(self, in_channels,
                 repeat=1, act=nn.ReLU(), ratio=1.0):

        super().__init__()

        h_channels = int(in_channels * ratio)
        self.cv1 = Conv(in_channels, in_channels, 3, 1, act=act) if repeat == 1 else Conv(in_channels, h_channels, 3, 1, act=act)
        self.cb = nn.Sequential(*(Conv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat-2))) if repeat > 2 else nn.Identity()
        self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)

    def forward(self, x):
        return self.cv2(self.cb(self.cv1(x)))


class RepConvBlock(nn.Module):
    # ConvBlock
    def __init__(self, in_channels,
                 repeat=1, act=nn.ReLU(), ratio=1.0):

        super().__init__()

        h_channels = int(in_channels * ratio)
        self.cv1 = Conv(in_channels, in_channels, 3, 1, act=act) if repeat == 1 else RepConv(in_channels, h_channels, 3, 1, act=act)
        self.cb = nn.Sequential(*(RepConv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat-2))) if repeat > 2 else nn.Identity()
        self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)

    def forward(self, x):
        return self.cv2(self.cb(self.cv1(x)))


class ResConvBlock(nn.Module):
    # ResConvBlock
    def __init__(self, in_channels, 
                 repeat=1, act=nn.ReLU(), ratio=1.0):

        super().__init__()

        h_channels = int(in_channels * ratio)
        self.cv1 = Conv(in_channels, in_channels, 3, 1, act=act) if repeat == 1 else Conv(in_channels, h_channels, 3, 1, act=act)
        self.cb = nn.Sequential(*(Conv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat-2))) if repeat > 2 else nn.Identity()
        self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)

    def forward(self, x):
        return x + self.cv2(self.cb(self.cv1(x)))


class ResRepConvBlock(nn.Module):
    # ResConvBlock
    def __init__(self, in_channels,
                 repeat=1, act=nn.ReLU(), ratio=1.0):

        super().__init__()

        h_channels = int(in_channels * ratio)
        self.cv1 = Conv(in_channels, in_channels, 3, 1, act=act) if repeat == 1 else RepConv(in_channels, h_channels, 3, 1, act=act)
        self.cb = nn.Sequential(*(RepConv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat-2))) if repeat > 2 else nn.Identity()
        self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)

    def forward(self, x):
        return x + self.cv2(self.cb(self.cv1(x)))


# Darknet

class Dark(nn.Module):
    # DarkNet bottleneck
    def __init__(self, in_channels, out_channels,
                 groups=1, act=nn.ReLU(), ratio=0.5):

        super().__init__()

        h_channels = int(in_channels * ratio)
        self.cv1 = Conv(in_channels, h_channels, 1, 1, act=act)
        self.cv2 = Conv(h_channels, out_channels, 3, 1, groups=groups, act=act)

    def forward(self, x):
        return x + self.cv2(self.cv1(x))


class RepDark(nn.Module):
    # RepDarkNet bottleneck
    def __init__(self, in_channels, out_channels,
                 groups=1, act=nn.ReLU(), ratio=0.5):

        super().__init__()

        h_channels = int(in_channels * ratio)
        self.cv1 = RepConv(in_channels, h_channels, 3, 1, groups=groups, act=act)
        self.cv2 = Conv(h_channels, out_channels, 1, 1, act=act)

    def forward(self, x):
        return x + self.cv2(self.cv1(x))


# CSPNet

class CSP(nn.Module):
    # CSPNet
    def __init__(self, in_channels, out_channels,
                 repeat=1, cb_repeat=2, act=nn.ReLU(), ratio=1.0):

        super().__init__()

        h_channels = in_channels // 2
        self.cv1 = Conv(in_channels, in_channels, 1, 1, act=act)
        self.cb = nn.Sequential(*(ResConvBlock(h_channels, act=act, repeat=cb_repeat) for _ in range(repeat)))
        self.cv2 = Conv(2 * h_channels, out_channels, 1, 1, act=act)

    def forward(self, x):

        y = list(self.cv1(x).chunk(2, 1))

        return self.cv2(torch.cat((self.cb(y[0]), y[1]), 1))


class CSPDark(nn.Module):
    # CSPNet
    def __init__(self, in_channels, out_channels,
                 repeat=1, groups=1, act=nn.ReLU(), ratio=1.0):

        super().__init__()

        h_channels = in_channels // 2
        self.cv1 = Conv(in_channels, in_channels, 1, 1, act=act)
        self.cb = nn.Sequential(*(Dark(h_channels, h_channels, groups=groups, act=act, ratio=ratio) for _ in range(repeat)))
        self.cv2 = Conv(2 * h_channels, out_channels, 1, 1, act=act)

    def forward(self, x):

        y = list(self.cv1(x).chunk(2, 1))

        return self.cv2(torch.cat((self.cb(y[0]), y[1]), 1))


# ELAN

class ELAN(nn.Module):
    # ELAN
    def __init__(self, in_channels, out_channels, med_channels,
                 elan_repeat=2, cb_repeat=2, ratio=1.0):

        super().__init__()

        h_channels = med_channels // 2
        self.cv1 = Conv(in_channels, med_channels, 1, 1)
        self.cb = nn.ModuleList(ConvBlock(h_channels, repeat=cb_repeat, ratio=ratio) for _ in range(elan_repeat))
        self.cv2 = Conv((2+elan_repeat) * h_channels, out_channels, 1, 1)

    def forward(self, x):

        y = list(self.cv1(x).chunk(2, 1))
        y.extend((m(y[-1])) for m in self.cb)

        return self.cv2(torch.cat(y, 1))


class CSPELAN(nn.Module):
    # ELAN
    def __init__(self, in_channels, out_channels, med_channels,
                 elan_repeat=2, cb_repeat=2, ratio=1.0):

        super().__init__()

        h_channels = med_channels // 2
        self.cv1 = Conv(in_channels, med_channels, 1, 1)
        self.cb = nn.ModuleList(CSP(h_channels, h_channels, repeat=cb_repeat, ratio=ratio) for _ in range(elan_repeat))
        self.cv2 = Conv((2+elan_repeat) * h_channels, out_channels, 1, 1)

    def forward(self, x):

        y = list(self.cv1(x).chunk(2, 1))
        y.extend((m(y[-1])) for m in self.cb)

        return self.cv2(torch.cat(y, 1))