File size: 11,422 Bytes
1197f7d 8ca39dc 1197f7d 8ca39dc 1197f7d 6aabc6c 8ca39dc 1197f7d b5fa3f1 dcceddd b5fa3f1 dcceddd 1197f7d b5fa3f1 1ff7fa6 1197f7d dcceddd 1197f7d b5fa3f1 1197f7d fce8aa7 1197f7d fce8aa7 1197f7d fce8aa7 1197f7d dcceddd 1197f7d dcceddd 1197f7d 6aabc6c 1197f7d dcceddd 1197f7d 1ff7fa6 1197f7d 1ff7fa6 1197f7d 1ff7fa6 1197f7d d252042 1197f7d b5fa3f1 1ff7fa6 1197f7d b5fa3f1 1197f7d 3fa2be7 96a806a 1197f7d b5fa3f1 8ca39dc b5fa3f1 1197f7d 8ca39dc 1197f7d dcceddd 1197f7d b5fa3f1 1197f7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import os
from os import path
from queue import Empty, Queue
from threading import Event, Thread
from typing import Generator, List, Optional, Tuple, Union
import cv2
import hydra
import numpy as np
import torch
from loguru import logger
from PIL import Image
from rich.progress import track
from torch import Tensor
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import functional as TF
from yolo.config.config import Config, TrainConfig
from yolo.tools.data_augmentation import (
AugmentationComposer,
HorizontalFlip,
MixUp,
Mosaic,
VerticalFlip,
)
from yolo.tools.dataset_preparation import prepare_dataset
from yolo.tools.drawer import draw_bboxes
from yolo.utils.dataset_utils import (
create_image_metadata,
locate_label_paths,
scale_segmentation,
)
class YoloDataset(Dataset):
def __init__(self, config: TrainConfig, phase: str = "train2017", image_size: int = 640):
augment_cfg = config.data.data_augment
phase_name = config.dataset.get(phase, phase)
self.image_size = image_size
transforms = [eval(aug)(prob) for aug, prob in augment_cfg.items()]
self.transform = AugmentationComposer(transforms, self.image_size)
self.transform.get_more_data = self.get_more_data
self.data = self.load_data(config.dataset.path, phase_name)
def load_data(self, dataset_path, phase_name):
"""
Loads data from a cache or generates a new cache for a specific dataset phase.
Parameters:
dataset_path (str): The root path to the dataset directory.
phase_name (str): The specific phase of the dataset (e.g., 'train', 'test') to load or generate data for.
Returns:
dict: The loaded data from the cache for the specified phase.
"""
cache_path = path.join(dataset_path, f"{phase_name}.cache")
if not path.isfile(cache_path):
logger.info("🏭 Generating {} cache", phase_name)
data = self.filter_data(dataset_path, phase_name)
torch.save(data, cache_path)
else:
data = torch.load(cache_path)
logger.info("📦 Loaded {} cache", phase_name)
return data
def filter_data(self, dataset_path: str, phase_name: str) -> list:
"""
Filters and collects dataset information by pairing images with their corresponding labels.
Parameters:
images_path (str): Path to the directory containing image files.
labels_path (str): Path to the directory containing label files.
Returns:
list: A list of tuples, each containing the path to an image file and its associated segmentation as a tensor.
"""
images_path = path.join(dataset_path, "images", phase_name)
labels_path, data_type = locate_label_paths(dataset_path, phase_name)
images_list = sorted(os.listdir(images_path))
if data_type == "json":
annotations_index, image_info_dict = create_image_metadata(labels_path)
data = []
valid_inputs = 0
for image_name in track(images_list, description="Filtering data"):
if not image_name.lower().endswith((".jpg", ".jpeg", ".png")):
continue
image_id, _ = path.splitext(image_name)
if data_type == "json":
image_info = image_info_dict.get(image_id, None)
if image_info is None:
continue
annotations = annotations_index.get(image_info["id"], [])
image_seg_annotations = scale_segmentation(annotations, image_info)
if not image_seg_annotations:
continue
elif data_type == "txt":
label_path = path.join(labels_path, f"{image_id}.txt")
if not path.isfile(label_path):
continue
with open(label_path, "r") as file:
image_seg_annotations = [list(map(float, line.strip().split())) for line in file]
else:
image_seg_annotations = []
labels = self.load_valid_labels(image_id, image_seg_annotations)
img_path = path.join(images_path, image_name)
data.append((img_path, labels))
valid_inputs += 1
logger.info("Recorded {}/{} valid inputs", valid_inputs, len(images_list))
return data
def load_valid_labels(self, label_path, seg_data_one_img) -> Union[torch.Tensor, None]:
"""
Loads and validates bounding box data is [0, 1] from a label file.
Parameters:
label_path (str): The filepath to the label file containing bounding box data.
Returns:
torch.Tensor or None: A tensor of all valid bounding boxes if any are found; otherwise, None.
"""
bboxes = []
for seg_data in seg_data_one_img:
cls = seg_data[0]
points = np.array(seg_data[1:]).reshape(-1, 2)
valid_points = points[(points >= 0) & (points <= 1)].reshape(-1, 2)
if valid_points.size > 1:
bbox = torch.tensor([cls, *valid_points.min(axis=0), *valid_points.max(axis=0)])
bboxes.append(bbox)
if bboxes:
return torch.stack(bboxes)
else:
logger.warning("No valid BBox in {}", label_path)
return torch.zeros((0, 5))
def get_data(self, idx):
img_path, bboxes = self.data[idx]
img = Image.open(img_path).convert("RGB")
return img, bboxes
def get_more_data(self, num: int = 1):
indices = torch.randint(0, len(self), (num,))
return [self.get_data(idx) for idx in indices]
def __getitem__(self, idx) -> Union[Image.Image, torch.Tensor]:
img, bboxes = self.get_data(idx)
if self.transform:
img, bboxes = self.transform(img, bboxes)
img = TF.to_tensor(img)
return img, bboxes
def __len__(self) -> int:
return len(self.data)
class YoloDataLoader(DataLoader):
def __init__(self, config: Config):
"""Initializes the YoloDataLoader with hydra-config files."""
data_cfg = config.task.data
dataset = YoloDataset(config.task, config.task.task)
super().__init__(
dataset,
batch_size=data_cfg.batch_size,
shuffle=data_cfg.shuffle,
num_workers=config.cpu_num,
pin_memory=data_cfg.pin_memory,
collate_fn=self.collate_fn,
)
def collate_fn(self, batch: List[Tuple[torch.Tensor, torch.Tensor]]) -> Tuple[torch.Tensor, List[torch.Tensor]]:
"""
A collate function to handle batching of images and their corresponding targets.
Args:
batch (list of tuples): Each tuple contains:
- image (torch.Tensor): The image tensor.
- labels (torch.Tensor): The tensor of labels for the image.
Returns:
Tuple[torch.Tensor, List[torch.Tensor]]: A tuple containing:
- A tensor of batched images.
- A list of tensors, each corresponding to bboxes for each image in the batch.
"""
batch_size = len(batch)
target_sizes = [item[1].size(0) for item in batch]
# TODO: Improve readability of these proccess
batch_targets = torch.zeros(batch_size, max(target_sizes), 5)
for idx, target_size in enumerate(target_sizes):
batch_targets[idx, :target_size] = batch[idx][1]
batch_images = torch.stack([item[0] for item in batch])
return batch_images, batch_targets
def create_dataloader(config: Config):
if config.task.task == "inference":
return StreamDataLoader(config)
if config.task.dataset.auto_download:
prepare_dataset(config.task.dataset)
return YoloDataLoader(config)
class StreamDataLoader:
def __init__(self, config: Config):
self.source = config.task.source
self.running = True
self.is_stream = isinstance(self.source, int) or self.source.lower().startswith("rtmp://")
self.transform = AugmentationComposer([], config.image_size[0])
self.stop_event = Event()
if self.is_stream:
self.cap = cv2.VideoCapture(self.source)
else:
self.queue = Queue()
self.thread = Thread(target=self.load_source)
self.thread.start()
def load_source(self):
if os.path.isdir(self.source): # image folder
self.load_image_folder(self.source)
elif any(self.source.lower().endswith(ext) for ext in [".mp4", ".avi", ".mkv"]): # Video file
self.load_video_file(self.source)
else: # Single image
self.process_image(self.source)
def load_image_folder(self, folder):
for root, _, files in os.walk(folder):
for file in files:
if self.stop_event.is_set():
break
if any(file.lower().endswith(ext) for ext in [".jpg", ".jpeg", ".png", ".bmp"]):
self.process_image(os.path.join(root, file))
def process_image(self, image_path):
image = Image.open(image_path).convert("RGB")
if image is None:
raise ValueError(f"Error loading image: {image_path}")
self.process_frame(image)
def load_video_file(self, video_path):
cap = cv2.VideoCapture(video_path)
while self.running:
ret, frame = cap.read()
if not ret:
break
self.process_frame(frame)
cap.release()
def cv2_to_tensor(self, frame: np.ndarray) -> Tensor:
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_float = frame_rgb.astype("float32") / 255.0
return torch.from_numpy(frame_float).permute(2, 0, 1)[None]
def process_frame(self, frame):
if isinstance(frame, np.ndarray):
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = Image.fromarray(frame)
frame, _ = self.transform(frame, torch.zeros(0, 5))
frame = TF.to_tensor(frame)[None]
if not self.is_stream:
self.queue.put(frame)
else:
self.current_frame = frame
def __iter__(self) -> Generator[Tensor, None, None]:
return self
def __next__(self) -> Tensor:
if self.is_stream:
ret, frame = self.cap.read()
if not ret:
self.stop()
raise StopIteration
self.process_frame(frame)
return self.current_frame
else:
try:
frame = self.queue.get(timeout=1)
return frame
except Empty:
raise StopIteration
def stop(self):
self.running = False
if self.is_stream:
self.cap.release()
else:
self.thread.join(timeout=1)
def __len__(self):
return self.queue.qsize() if not self.is_stream else 0
@hydra.main(config_path="../config", config_name="config", version_base=None)
def main(cfg):
dataloader = create_dataloader(cfg)
draw_bboxes(*next(iter(dataloader)))
if __name__ == "__main__":
import sys
sys.path.append("./")
from utils.logging_utils import custom_logger
custom_logger()
main()
|