File size: 7,488 Bytes
1197f7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
from os import path
from typing import List, Tuple, Union

import diskcache as dc
import hydra
import numpy as np
import torch
from loguru import logger
from PIL import Image
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import functional as TF
from tqdm.rich import tqdm

from yolo.tools.dataset_helper import (
    create_image_info_dict,
    find_labels_path,
    get_scaled_segmentation,
)
from yolo.utils.data_augment import Compose, HorizontalFlip, MixUp, Mosaic, VerticalFlip
from yolo.utils.drawer import draw_bboxes


class YoloDataset(Dataset):
    def __init__(self, config: dict, phase: str = "train2017", image_size: int = 640):
        dataset_cfg = config.data
        augment_cfg = config.augmentation
        phase_name = dataset_cfg.get(phase, phase)
        self.image_size = image_size

        transforms = [eval(aug)(prob) for aug, prob in augment_cfg.items()]
        self.transform = Compose(transforms, self.image_size)
        self.transform.get_more_data = self.get_more_data
        self.data = self.load_data(dataset_cfg.path, phase_name)

    def load_data(self, dataset_path, phase_name):
        """
        Loads data from a cache or generates a new cache for a specific dataset phase.

        Parameters:
            dataset_path (str): The root path to the dataset directory.
            phase_name (str): The specific phase of the dataset (e.g., 'train', 'test') to load or generate data for.

        Returns:
            dict: The loaded data from the cache for the specified phase.
        """
        cache_path = path.join(dataset_path, ".cache")
        cache = dc.Cache(cache_path)
        data = cache.get(phase_name)

        if data is None:
            logger.info("Generating {} cache", phase_name)
            data = self.filter_data(dataset_path, phase_name)
            cache[phase_name] = data

        cache.close()
        logger.info("📦 Loaded {} cache", phase_name)
        data = cache[phase_name]
        return data

    def filter_data(self, dataset_path: str, phase_name: str) -> list:
        """
        Filters and collects dataset information by pairing images with their corresponding labels.

        Parameters:
            images_path (str): Path to the directory containing image files.
            labels_path (str): Path to the directory containing label files.

        Returns:
            list: A list of tuples, each containing the path to an image file and its associated segmentation as a tensor.
        """
        images_path = path.join(dataset_path, "images", phase_name)
        labels_path, data_type = find_labels_path(dataset_path, phase_name)
        images_list = sorted(os.listdir(images_path))
        if data_type == "json":
            annotations_index, image_info_dict = create_image_info_dict(labels_path)

        data = []
        valid_inputs = 0
        for image_name in tqdm(images_list, desc="Filtering data"):
            if not image_name.lower().endswith((".jpg", ".jpeg", ".png")):
                continue
            image_id, _ = path.splitext(image_name)

            if data_type == "json":
                image_info = image_info_dict.get(image_id, None)
                if image_info is None:
                    continue
                annotations = annotations_index.get(image_info["id"], [])
                image_seg_annotations = get_scaled_segmentation(annotations, image_info)
                if not image_seg_annotations:
                    continue

            elif data_type == "txt":
                label_path = path.join(labels_path, f"{image_id}.txt")
                if not path.isfile(label_path):
                    continue
                with open(label_path, "r") as file:
                    image_seg_annotations = [list(map(float, line.strip().split())) for line in file]

            labels = self.load_valid_labels(image_id, image_seg_annotations)
            if labels is not None:
                img_path = path.join(images_path, image_name)
                data.append((img_path, labels))
                valid_inputs += 1

        logger.info("Recorded {}/{} valid inputs", valid_inputs, len(images_list))
        return data

    def load_valid_labels(self, label_path, seg_data_one_img) -> Union[torch.Tensor, None]:
        """
        Loads and validates bounding box data is [0, 1] from a label file.

        Parameters:
            label_path (str): The filepath to the label file containing bounding box data.

        Returns:
            torch.Tensor or None: A tensor of all valid bounding boxes if any are found; otherwise, None.
        """
        bboxes = []
        for seg_data in seg_data_one_img:
            cls = seg_data[0]
            points = np.array(seg_data[1:]).reshape(-1, 2)
            valid_points = points[(points >= 0) & (points <= 1)].reshape(-1, 2)
            if valid_points.size > 1:
                bbox = torch.tensor([cls, *valid_points.min(axis=0), *valid_points.max(axis=0)])
                bboxes.append(bbox)

        if bboxes:
            return torch.stack(bboxes)
        else:
            logger.warning("No valid BBox in {}", label_path)
            return None

    def get_data(self, idx):
        img_path, bboxes = self.data[idx]
        img = Image.open(img_path).convert("RGB")
        return img, bboxes

    def get_more_data(self, num: int = 1):
        indices = torch.randint(0, len(self), (num,))
        return [self.get_data(idx) for idx in indices]

    def __getitem__(self, idx) -> Union[Image.Image, torch.Tensor]:
        img, bboxes = self.get_data(idx)
        if self.transform:
            img, bboxes = self.transform(img, bboxes)
        img = TF.to_tensor(img)
        return img, bboxes

    def __len__(self) -> int:
        return len(self.data)


class YoloDataLoader(DataLoader):
    def __init__(self, config: dict):
        """Initializes the YoloDataLoader with hydra-config files."""
        hyper = config.hyper.data
        dataset = YoloDataset(config)

        super().__init__(
            dataset,
            batch_size=hyper.batch_size,
            shuffle=hyper.shuffle,
            num_workers=hyper.num_workers,
            pin_memory=hyper.pin_memory,
            collate_fn=self.collate_fn,
        )

    def collate_fn(self, batch: List[Tuple[torch.Tensor, torch.Tensor]]) -> Tuple[torch.Tensor, List[torch.Tensor]]:
        """
        A collate function to handle batching of images and their corresponding targets.

        Args:
            batch (list of tuples): Each tuple contains:
                - image (torch.Tensor): The image tensor.
                - labels (torch.Tensor): The tensor of labels for the image.

        Returns:
            Tuple[torch.Tensor, List[torch.Tensor]]: A tuple containing:
                - A tensor of batched images.
                - A list of tensors, each corresponding to bboxes for each image in the batch.
        """
        images = torch.stack([item[0] for item in batch])
        targets = [item[1] for item in batch]
        return images, targets


def get_dataloader(config):
    return YoloDataLoader(config)


@hydra.main(config_path="../config", config_name="config", version_base=None)
def main(cfg):
    dataloader = get_dataloader(cfg)
    draw_bboxes(*next(iter(dataloader)))


if __name__ == "__main__":
    import sys

    sys.path.append("./")
    from tools.log_helper import custom_logger

    custom_logger()
    main()