File size: 3,262 Bytes
1197f7d b5fa3f1 1197f7d 856cce6 1197f7d cbbfcfe b5fa3f1 1197f7d 97e9dcb f99f89b cbbfcfe b5fa3f1 1197f7d b5fa3f1 1197f7d b5fa3f1 1197f7d b5fa3f1 1197f7d b5fa3f1 1197f7d 97e9dcb b5fa3f1 97e9dcb 1197f7d b5fa3f1 1197f7d b5fa3f1 1197f7d 16c6705 b5fa3f1 16c6705 1197f7d b5fa3f1 97e9dcb c653e7e ecf6aba 1197f7d 97e9dcb 1197f7d b5fa3f1 97e9dcb b5fa3f1 1197f7d b5fa3f1 1197f7d b5fa3f1 7692528 475302b b5fa3f1 1197f7d b5fa3f1 1197f7d b5fa3f1 1197f7d 306fc38 1197f7d 856cce6 5727efb 856cce6 475302b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Union
from torch import nn
@dataclass
class AnchorConfig:
reg_max: int
strides: List[int]
@dataclass
class LayerConfg:
args: Dict
source: Union[int, str, List[int]]
tags: str
@dataclass
class BlockConfig:
block: List[Dict[str, LayerConfg]]
@dataclass
class ModelConfig:
name: Optional[str]
anchor: AnchorConfig
model: Dict[str, BlockConfig]
@dataclass
class DownloadDetail:
url: str
file_size: int
@dataclass
class DownloadOptions:
details: Dict[str, DownloadDetail]
@dataclass
class DatasetConfig:
path: str
auto_download: Optional[DownloadOptions]
@dataclass
class DataConfig:
shuffle: bool
batch_size: int
pin_memory: bool
cpu_num: int
image_size: List[int]
data_augment: Dict[str, int]
source: Optional[Union[str, int]]
@dataclass
class OptimizerArgs:
lr: float
weight_decay: float
@dataclass
class OptimizerConfig:
type: str
args: OptimizerArgs
@dataclass
class MatcherConfig:
iou: str
topk: int
factor: Dict[str, int]
@dataclass
class LossConfig:
objective: Dict[str, int]
aux: Union[bool, float]
matcher: MatcherConfig
@dataclass
class SchedulerConfig:
type: str
warmup: Dict[str, Union[int, float]]
args: Dict[str, Any]
@dataclass
class EMAConfig:
enabled: bool
decay: float
@dataclass
class NMSConfig:
min_confidence: int
min_iou: int
@dataclass
class InferenceConfig:
task: str
nms: NMSConfig
data: DataConfig
fast_inference: Optional[None]
save_predict: bool
@dataclass
class ValidationConfig:
task: str
nms: NMSConfig
data: DataConfig
@dataclass
class TrainConfig:
task: str
epoch: int
data: DataConfig
optimizer: OptimizerConfig
loss: LossConfig
scheduler: SchedulerConfig
ema: EMAConfig
validation: ValidationConfig
@dataclass
class Config:
task: Union[TrainConfig, InferenceConfig, ValidationConfig]
dataset: DatasetConfig
model: ModelConfig
name: str
device: Union[str, int, List[int]]
cpu_num: int
class_num: int
class_list: List[str]
class_idx_id: List[int]
image_size: List[int]
out_path: str
exist_ok: bool
lucky_number: 10
use_wandb: bool
use_TensorBoard: bool
weight: Optional[str]
@dataclass
class YOLOLayer(nn.Module):
source: Union[int, str, List[int]]
output: bool
tags: str
layer_type: str
usable: bool
def __post_init__(self):
super().__init__()
IDX_TO_ID = [
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
27,
28,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
67,
70,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
84,
85,
86,
87,
88,
89,
90,
]
|