File size: 11,453 Bytes
1197f7d
 
8ca39dc
 
97e9dcb
1197f7d
8ca39dc
1197f7d
 
 
 
6aabc6c
8ca39dc
1197f7d
1fe2937
1197f7d
97e9dcb
dcceddd
 
 
 
 
 
 
b5fa3f1
dcceddd
 
 
 
1197f7d
 
 
 
97e9dcb
 
 
 
1197f7d
 
dcceddd
1197f7d
97e9dcb
1197f7d
 
 
 
 
 
 
 
 
 
 
 
fce8aa7
1197f7d
fce8aa7
 
1197f7d
fce8aa7
 
 
 
1197f7d
 
 
 
 
 
 
 
 
 
 
 
 
 
dcceddd
1197f7d
 
dcceddd
1197f7d
 
 
6aabc6c
1197f7d
 
 
 
 
 
 
 
 
dcceddd
1197f7d
 
 
 
 
 
 
 
 
1ff7fa6
 
1197f7d
 
 
1ff7fa6
 
 
1197f7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ff7fa6
1197f7d
 
 
 
8b1b21f
1197f7d
 
 
8b1b21f
1197f7d
 
8b1b21f
 
 
1197f7d
 
 
 
 
 
1fe2937
1197f7d
97e9dcb
1fe2937
97e9dcb
1197f7d
 
b5fa3f1
1fe2937
 
97e9dcb
b5fa3f1
1197f7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fa2be7
 
 
 
97e9dcb
3fa2be7
 
97e9dcb
3fa2be7
8b1b21f
 
 
3fa2be7
8b1b21f
1197f7d
 
1fe2937
97e9dcb
 
8ca39dc
97e9dcb
5958998
b5fa3f1
1fe2937
1197f7d
 
8ca39dc
97e9dcb
 
8ca39dc
 
 
97e9dcb
8ca39dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b1b21f
15f0a98
7daf6f0
8b1b21f
8ca39dc
8b1b21f
8ca39dc
8b1b21f
8ca39dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import os
from os import path
from queue import Empty, Queue
from threading import Event, Thread
from typing import Generator, List, Tuple, Union

import cv2
import numpy as np
import torch
from loguru import logger
from PIL import Image
from rich.progress import track
from torch import Tensor
from torch.utils.data import DataLoader, Dataset
from torch.utils.data.distributed import DistributedSampler

from yolo.config.config import DataConfig, DatasetConfig
from yolo.tools.data_augmentation import (
    AugmentationComposer,
    HorizontalFlip,
    MixUp,
    Mosaic,
    VerticalFlip,
)
from yolo.tools.dataset_preparation import prepare_dataset
from yolo.utils.dataset_utils import (
    create_image_metadata,
    locate_label_paths,
    scale_segmentation,
)


class YoloDataset(Dataset):
    def __init__(self, data_cfg: DataConfig, dataset_cfg: DatasetConfig, phase: str = "train2017"):
        augment_cfg = data_cfg.data_augment
        self.image_size = data_cfg.image_size
        phase_name = dataset_cfg.get(phase, phase)

        transforms = [eval(aug)(prob) for aug, prob in augment_cfg.items()]
        self.transform = AugmentationComposer(transforms, self.image_size)
        self.transform.get_more_data = self.get_more_data
        self.data = self.load_data(dataset_cfg.path, phase_name)

    def load_data(self, dataset_path, phase_name):
        """
        Loads data from a cache or generates a new cache for a specific dataset phase.

        Parameters:
            dataset_path (str): The root path to the dataset directory.
            phase_name (str): The specific phase of the dataset (e.g., 'train', 'test') to load or generate data for.

        Returns:
            dict: The loaded data from the cache for the specified phase.
        """
        cache_path = path.join(dataset_path, f"{phase_name}.cache")

        if not path.isfile(cache_path):
            logger.info("🏭 Generating {} cache", phase_name)
            data = self.filter_data(dataset_path, phase_name)
            torch.save(data, cache_path)
        else:
            data = torch.load(cache_path)
            logger.info("📦 Loaded {} cache", phase_name)
        return data

    def filter_data(self, dataset_path: str, phase_name: str) -> list:
        """
        Filters and collects dataset information by pairing images with their corresponding labels.

        Parameters:
            images_path (str): Path to the directory containing image files.
            labels_path (str): Path to the directory containing label files.

        Returns:
            list: A list of tuples, each containing the path to an image file and its associated segmentation as a tensor.
        """
        images_path = path.join(dataset_path, "images", phase_name)
        labels_path, data_type = locate_label_paths(dataset_path, phase_name)
        images_list = sorted(os.listdir(images_path))
        if data_type == "json":
            annotations_index, image_info_dict = create_image_metadata(labels_path)

        data = []
        valid_inputs = 0
        for image_name in track(images_list, description="Filtering data"):
            if not image_name.lower().endswith((".jpg", ".jpeg", ".png")):
                continue
            image_id, _ = path.splitext(image_name)

            if data_type == "json":
                image_info = image_info_dict.get(image_id, None)
                if image_info is None:
                    continue
                annotations = annotations_index.get(image_info["id"], [])
                image_seg_annotations = scale_segmentation(annotations, image_info)
                if not image_seg_annotations:
                    continue

            elif data_type == "txt":
                label_path = path.join(labels_path, f"{image_id}.txt")
                if not path.isfile(label_path):
                    continue
                with open(label_path, "r") as file:
                    image_seg_annotations = [list(map(float, line.strip().split())) for line in file]
            else:
                image_seg_annotations = []

            labels = self.load_valid_labels(image_id, image_seg_annotations)

            img_path = path.join(images_path, image_name)
            data.append((img_path, labels))
            valid_inputs += 1
        logger.info("Recorded {}/{} valid inputs", valid_inputs, len(images_list))
        return data

    def load_valid_labels(self, label_path, seg_data_one_img) -> Union[torch.Tensor, None]:
        """
        Loads and validates bounding box data is [0, 1] from a label file.

        Parameters:
            label_path (str): The filepath to the label file containing bounding box data.

        Returns:
            torch.Tensor or None: A tensor of all valid bounding boxes if any are found; otherwise, None.
        """
        bboxes = []
        for seg_data in seg_data_one_img:
            cls = seg_data[0]
            points = np.array(seg_data[1:]).reshape(-1, 2)
            valid_points = points[(points >= 0) & (points <= 1)].reshape(-1, 2)
            if valid_points.size > 1:
                bbox = torch.tensor([cls, *valid_points.min(axis=0), *valid_points.max(axis=0)])
                bboxes.append(bbox)

        if bboxes:
            return torch.stack(bboxes)
        else:
            logger.warning("No valid BBox in {}", label_path)
            return torch.zeros((0, 5))

    def get_data(self, idx):
        img_path, bboxes = self.data[idx]
        img = Image.open(img_path).convert("RGB")
        return img, bboxes, img_path

    def get_more_data(self, num: int = 1):
        indices = torch.randint(0, len(self), (num,))
        return [self.get_data(idx)[:2] for idx in indices]

    def __getitem__(self, idx) -> Union[Image.Image, torch.Tensor]:
        img, bboxes, img_path = self.get_data(idx)
        img, bboxes, rev_tensor = self.transform(img, bboxes)
        return img, bboxes, rev_tensor, img_path

    def __len__(self) -> int:
        return len(self.data)


class YoloDataLoader(DataLoader):
    def __init__(self, data_cfg: DataConfig, dataset_cfg: DatasetConfig, task: str = "train", use_ddp: bool = False):
        """Initializes the YoloDataLoader with hydra-config files."""
        dataset = YoloDataset(data_cfg, dataset_cfg, task)
        sampler = DistributedSampler(dataset, shuffle=data_cfg.shuffle) if use_ddp else None
        self.image_size = data_cfg.image_size[0]
        super().__init__(
            dataset,
            batch_size=data_cfg.batch_size,
            sampler=sampler,
            shuffle=data_cfg.shuffle and not use_ddp,
            num_workers=data_cfg.cpu_num,
            pin_memory=data_cfg.pin_memory,
            collate_fn=self.collate_fn,
        )

    def collate_fn(self, batch: List[Tuple[torch.Tensor, torch.Tensor]]) -> Tuple[torch.Tensor, List[torch.Tensor]]:
        """
        A collate function to handle batching of images and their corresponding targets.

        Args:
            batch (list of tuples): Each tuple contains:
                - image (torch.Tensor): The image tensor.
                - labels (torch.Tensor): The tensor of labels for the image.

        Returns:
            Tuple[torch.Tensor, List[torch.Tensor]]: A tuple containing:
                - A tensor of batched images.
                - A list of tensors, each corresponding to bboxes for each image in the batch.
        """
        batch_size = len(batch)
        target_sizes = [item[1].size(0) for item in batch]
        # TODO: Improve readability of these proccess
        batch_targets = torch.zeros(batch_size, max(target_sizes), 5)
        batch_targets[:, :, 0] = -1
        for idx, target_size in enumerate(target_sizes):
            batch_targets[idx, :target_size] = batch[idx][1]
        batch_targets[:, :, 1:] *= self.image_size

        batch_images, _, batch_reverse, batch_path = zip(*batch)
        batch_images = torch.stack(batch_images)
        batch_reverse = torch.stack(batch_reverse)

        return batch_images, batch_targets, batch_reverse, batch_path


def create_dataloader(data_cfg: DataConfig, dataset_cfg: DatasetConfig, task: str = "train", use_ddp: bool = False):
    if task == "inference":
        return StreamDataLoader(data_cfg)

    if dataset_cfg.auto_download:
        prepare_dataset(dataset_cfg, task)

    return YoloDataLoader(data_cfg, dataset_cfg, task, use_ddp)


class StreamDataLoader:
    def __init__(self, data_cfg: DataConfig):
        self.source = data_cfg.source
        self.running = True
        self.is_stream = isinstance(self.source, int) or self.source.lower().startswith("rtmp://")

        self.transform = AugmentationComposer([], data_cfg.image_size)
        self.stop_event = Event()

        if self.is_stream:
            self.cap = cv2.VideoCapture(self.source)
        else:
            self.queue = Queue()
            self.thread = Thread(target=self.load_source)
            self.thread.start()

    def load_source(self):
        if os.path.isdir(self.source):  # image folder
            self.load_image_folder(self.source)
        elif any(self.source.lower().endswith(ext) for ext in [".mp4", ".avi", ".mkv"]):  # Video file
            self.load_video_file(self.source)
        else:  # Single image
            self.process_image(self.source)

    def load_image_folder(self, folder):
        for root, _, files in os.walk(folder):
            for file in files:
                if self.stop_event.is_set():
                    break
                if any(file.lower().endswith(ext) for ext in [".jpg", ".jpeg", ".png", ".bmp"]):
                    self.process_image(os.path.join(root, file))

    def process_image(self, image_path):
        image = Image.open(image_path).convert("RGB")
        if image is None:
            raise ValueError(f"Error loading image: {image_path}")
        self.process_frame(image)

    def load_video_file(self, video_path):
        cap = cv2.VideoCapture(video_path)
        while self.running:
            ret, frame = cap.read()
            if not ret:
                break
            self.process_frame(frame)
        cap.release()

    def process_frame(self, frame):
        if isinstance(frame, np.ndarray):
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            frame = Image.fromarray(frame)
        origin_frame = frame
        frame, _, rev_tensor = self.transform(frame, torch.zeros(0, 5))
        frame = frame[None]
        rev_tensor = rev_tensor[None]
        if not self.is_stream:
            self.queue.put((frame, rev_tensor, origin_frame))
        else:
            self.current_frame = (frame, rev_tensor, origin_frame)

    def __iter__(self) -> Generator[Tensor, None, None]:
        return self

    def __next__(self) -> Tensor:
        if self.is_stream:
            ret, frame = self.cap.read()
            if not ret:
                self.stop()
                raise StopIteration
            self.process_frame(frame)
            return self.current_frame
        else:
            try:
                frame = self.queue.get(timeout=1)
                return frame
            except Empty:
                raise StopIteration

    def stop(self):
        self.running = False
        if self.is_stream:
            self.cap.release()
        else:
            self.thread.join(timeout=1)

    def __len__(self):
        return self.queue.qsize() if not self.is_stream else 0