File size: 15,352 Bytes
2ae492a 253e9b1 f95a3d7 2ae492a a87899e 2ae492a 97e9dcb 200b5c1 2ae492a b86ec3e 2dd2ae5 b86ec3e 2dd2ae5 2ae492a b86ec3e 86ef0ef 2ae492a b86ec3e 2ae492a b86ec3e 2ae492a 2dd2ae5 2ae492a 2dd2ae5 2ae492a 97e9dcb 2ae492a a87899e 2dd2ae5 200b5c1 b86ec3e 41f1f41 b86ec3e c8710f3 b86ec3e c8710f3 b86ec3e 2dd2ae5 b86ec3e 2dd2ae5 c0e778f 86ef0ef a87899e b5fa3f1 c0e778f b2baf14 a87899e b5fa3f1 a87899e 2dd2ae5 a87899e b2baf14 7692528 b2baf14 a87899e b2baf14 7692528 b2baf14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import math
from typing import List, Tuple
import torch
import torch.nn.functional as F
from einops import rearrange
from loguru import logger
from torch import Tensor
from torchvision.ops import batched_nms
from yolo.config.config import MatcherConfig, ModelConfig, NMSConfig
from yolo.model.yolo import YOLO
def calculate_iou(bbox1, bbox2, metrics="iou") -> Tensor:
metrics = metrics.lower()
EPS = 1e-9
dtype = bbox1.dtype
bbox1 = bbox1.to(torch.float32)
bbox2 = bbox2.to(torch.float32)
# Expand dimensions if necessary
if bbox1.ndim == 2 and bbox2.ndim == 2:
bbox1 = bbox1.unsqueeze(1) # (Ax4) -> (Ax1x4)
bbox2 = bbox2.unsqueeze(0) # (Bx4) -> (1xBx4)
elif bbox1.ndim == 3 and bbox2.ndim == 3:
bbox1 = bbox1.unsqueeze(2) # (BZxAx4) -> (BZxAx1x4)
bbox2 = bbox2.unsqueeze(1) # (BZxBx4) -> (BZx1xBx4)
# Calculate intersection coordinates
xmin_inter = torch.max(bbox1[..., 0], bbox2[..., 0])
ymin_inter = torch.max(bbox1[..., 1], bbox2[..., 1])
xmax_inter = torch.min(bbox1[..., 2], bbox2[..., 2])
ymax_inter = torch.min(bbox1[..., 3], bbox2[..., 3])
# Calculate intersection area
intersection_area = torch.clamp(xmax_inter - xmin_inter, min=0) * torch.clamp(ymax_inter - ymin_inter, min=0)
# Calculate area of each bbox
area_bbox1 = (bbox1[..., 2] - bbox1[..., 0]) * (bbox1[..., 3] - bbox1[..., 1])
area_bbox2 = (bbox2[..., 2] - bbox2[..., 0]) * (bbox2[..., 3] - bbox2[..., 1])
# Calculate union area
union_area = area_bbox1 + area_bbox2 - intersection_area
# Calculate IoU
iou = intersection_area / (union_area + EPS)
if metrics == "iou":
return iou
# Calculate centroid distance
cx1 = (bbox1[..., 2] + bbox1[..., 0]) / 2
cy1 = (bbox1[..., 3] + bbox1[..., 1]) / 2
cx2 = (bbox2[..., 2] + bbox2[..., 0]) / 2
cy2 = (bbox2[..., 3] + bbox2[..., 1]) / 2
cent_dis = (cx1 - cx2) ** 2 + (cy1 - cy2) ** 2
# Calculate diagonal length of the smallest enclosing box
c_x = torch.max(bbox1[..., 2], bbox2[..., 2]) - torch.min(bbox1[..., 0], bbox2[..., 0])
c_y = torch.max(bbox1[..., 3], bbox2[..., 3]) - torch.min(bbox1[..., 1], bbox2[..., 1])
diag_dis = c_x**2 + c_y**2 + EPS
diou = iou - (cent_dis / diag_dis)
if metrics == "diou":
return diou
# Compute aspect ratio penalty term
arctan = torch.atan((bbox1[..., 2] - bbox1[..., 0]) / (bbox1[..., 3] - bbox1[..., 1] + EPS)) - torch.atan(
(bbox2[..., 2] - bbox2[..., 0]) / (bbox2[..., 3] - bbox2[..., 1] + EPS)
)
v = (4 / (math.pi**2)) * (arctan**2)
alpha = v / (v - iou + 1 + EPS)
# Compute CIoU
ciou = diou - alpha * v
return ciou.to(dtype)
def transform_bbox(bbox: Tensor, indicator="xywh -> xyxy"):
data_type = bbox.dtype
in_type, out_type = indicator.replace(" ", "").split("->")
if in_type not in ["xyxy", "xywh", "xycwh"] or out_type not in ["xyxy", "xywh", "xycwh"]:
raise ValueError("Invalid input or output format")
if in_type == "xywh":
x_min = bbox[..., 0]
y_min = bbox[..., 1]
x_max = bbox[..., 0] + bbox[..., 2]
y_max = bbox[..., 1] + bbox[..., 3]
elif in_type == "xyxy":
x_min = bbox[..., 0]
y_min = bbox[..., 1]
x_max = bbox[..., 2]
y_max = bbox[..., 3]
elif in_type == "xycwh":
x_min = bbox[..., 0] - bbox[..., 2] / 2
y_min = bbox[..., 1] - bbox[..., 3] / 2
x_max = bbox[..., 0] + bbox[..., 2] / 2
y_max = bbox[..., 1] + bbox[..., 3] / 2
if out_type == "xywh":
bbox = torch.stack([x_min, y_min, x_max - x_min, y_max - y_min], dim=-1)
elif out_type == "xyxy":
bbox = torch.stack([x_min, y_min, x_max, y_max], dim=-1)
elif out_type == "xycwh":
bbox = torch.stack([(x_min + x_max) / 2, (y_min + y_max) / 2, x_max - x_min, y_max - y_min], dim=-1)
return bbox.to(dtype=data_type)
def generate_anchors(image_size: List[int], strides: List[int]):
"""
Find the anchor maps for each w, h.
Args:
image_size List: the image size of augmented image size
strides List[8, 16, 32, ...]: the stride size for each predicted layer
Returns:
all_anchors [HW x 2]:
all_scalers [HW]: The index of the best targets for each anchors
"""
W, H = image_size
anchors = []
scaler = []
for stride in strides:
anchor_num = W // stride * H // stride
scaler.append(torch.full((anchor_num,), stride))
shift = stride // 2
h = torch.arange(0, H, stride) + shift
w = torch.arange(0, W, stride) + shift
anchor_h, anchor_w = torch.meshgrid(h, w, indexing="ij")
anchor = torch.stack([anchor_w.flatten(), anchor_h.flatten()], dim=-1)
anchors.append(anchor)
all_anchors = torch.cat(anchors, dim=0)
all_scalers = torch.cat(scaler, dim=0)
return all_anchors, all_scalers
class BoxMatcher:
def __init__(self, cfg: MatcherConfig, class_num: int, anchors: Tensor) -> None:
self.class_num = class_num
self.anchors = anchors
for attr_name in cfg:
setattr(self, attr_name, cfg[attr_name])
def get_valid_matrix(self, target_bbox: Tensor):
"""
Get a boolean mask that indicates whether each target bounding box overlaps with each anchor.
Args:
target_bbox [batch x targets x 4]: The bounding box of each targets.
Returns:
[batch x targets x anchors]: A boolean tensor indicates if target bounding box overlaps with anchors.
"""
Xmin, Ymin, Xmax, Ymax = target_bbox[:, :, None].unbind(3)
anchors = self.anchors[None, None] # add a axis at first, second dimension
anchors_x, anchors_y = anchors.unbind(dim=3)
target_in_x = (Xmin < anchors_x) & (anchors_x < Xmax)
target_in_y = (Ymin < anchors_y) & (anchors_y < Ymax)
target_on_anchor = target_in_x & target_in_y
return target_on_anchor
def get_cls_matrix(self, predict_cls: Tensor, target_cls: Tensor) -> Tensor:
"""
Get the (predicted class' probabilities) corresponding to the target classes across all anchors
Args:
predict_cls [batch x class x anchors]: The predicted probabilities for each class across each anchor.
target_cls [batch x targets]: The class index for each target.
Returns:
[batch x targets x anchors]: The probabilities from `pred_cls` corresponding to the class indices specified in `target_cls`.
"""
# TODO: Turn 8400 to HW
target_cls = target_cls.expand(-1, -1, 8400)
predict_cls = predict_cls.transpose(1, 2)
cls_probabilities = torch.gather(predict_cls, 1, target_cls)
return cls_probabilities
def get_iou_matrix(self, predict_bbox, target_bbox) -> Tensor:
"""
Get the IoU between each target bounding box and each predicted bounding box.
Args:
predict_bbox [batch x predicts x 4]: Bounding box with [x1, y1, x2, y2].
target_bbox [batch x targets x 4]: Bounding box with [x1, y1, x2, y2].
Returns:
[batch x targets x predicts]: The IoU scores between each target and predicted.
"""
return calculate_iou(target_bbox, predict_bbox, self.iou).clamp(0, 1)
def filter_topk(self, target_matrix: Tensor, topk: int = 10) -> Tuple[Tensor, Tensor]:
"""
Filter the top-k suitability of targets for each anchor.
Args:
target_matrix [batch x targets x anchors]: The suitability for each targets-anchors
topk (int, optional): Number of top scores to retain per anchor.
Returns:
topk_targets [batch x targets x anchors]: Only leave the topk targets for each anchor
topk_masks [batch x targets x anchors]: A boolean mask indicating the top-k scores' positions.
"""
values, indices = target_matrix.topk(topk, dim=-1)
topk_targets = torch.zeros_like(target_matrix, device=target_matrix.device)
topk_targets.scatter_(dim=-1, index=indices, src=values)
topk_masks = topk_targets > 0
return topk_targets, topk_masks
def filter_duplicates(self, target_matrix: Tensor):
"""
Filter the maximum suitability target index of each anchor.
Args:
target_matrix [batch x targets x anchors]: The suitability for each targets-anchors
Returns:
unique_indices [batch x anchors x 1]: The index of the best targets for each anchors
"""
unique_indices = target_matrix.argmax(dim=1)
return unique_indices[..., None]
def __call__(self, target: Tensor, predict: Tuple[Tensor]) -> Tuple[Tensor, Tensor]:
"""
1. For each anchor prediction, find the highest suitability targets
2. Select the targets
2. Noramlize the class probilities of targets
"""
predict_cls, predict_bbox = predict
target_cls, target_bbox = target.split([1, 4], dim=-1) # B x N x (C B) -> B x N x C, B x N x B
target_cls = target_cls.long().clamp(0)
# get valid matrix (each gt appear in which anchor grid)
grid_mask = self.get_valid_matrix(target_bbox)
# get iou matrix (iou with each gt bbox and each predict anchor)
iou_mat = self.get_iou_matrix(predict_bbox, target_bbox)
# get cls matrix (cls prob with each gt class and each predict class)
cls_mat = self.get_cls_matrix(predict_cls.sigmoid(), target_cls)
target_matrix = grid_mask * (iou_mat ** self.factor["iou"]) * (cls_mat ** self.factor["cls"])
# choose topk
topk_targets, topk_mask = self.filter_topk(target_matrix, topk=self.topk)
# delete one anchor pred assign to mutliple gts
unique_indices = self.filter_duplicates(topk_targets)
# TODO: do we need grid_mask? Filter the valid groud truth
valid_mask = (grid_mask.sum(dim=-2) * topk_mask.sum(dim=-2)).bool()
align_bbox = torch.gather(target_bbox, 1, unique_indices.repeat(1, 1, 4))
align_cls = torch.gather(target_cls, 1, unique_indices).squeeze(-1)
align_cls = F.one_hot(align_cls, self.class_num)
# normalize class ditribution
max_target = target_matrix.amax(dim=-1, keepdim=True)
max_iou = iou_mat.amax(dim=-1, keepdim=True)
normalize_term = (target_matrix / (max_target + 1e-9)) * max_iou
normalize_term = normalize_term.permute(0, 2, 1).gather(2, unique_indices)
align_cls = align_cls * normalize_term * valid_mask[:, :, None]
return torch.cat([align_cls, align_bbox], dim=-1), valid_mask.bool()
class Vec2Box:
def __init__(self, model: YOLO, image_size, device):
self.device = device
if getattr(model, "strides"):
logger.info(f"🈶 Found stride of model {model.strides}")
self.strides = model.strides
else:
logger.info("🧸 Found no stride of model, performed a dummy test for auto-anchor size")
self.strides = self.create_auto_anchor(model, image_size)
# TODO: this is a exception of onnx, remove it when onnx device if fixed
if not isinstance(model, YOLO):
device = torch.device("cpu")
anchor_grid, scaler = generate_anchors(image_size, self.strides)
self.anchor_grid, self.scaler = anchor_grid.to(device), scaler.to(device)
def create_auto_anchor(self, model: YOLO, image_size):
dummy_input = torch.zeros(1, 3, *image_size).to(self.device)
dummy_output = model(dummy_input)
strides = []
for predict_head in dummy_output["Main"]:
_, _, *anchor_num = predict_head[2].shape
strides.append(image_size[1] // anchor_num[1])
return strides
def update(self, image_size):
anchor_grid, scaler = generate_anchors(image_size, self.strides)
self.anchor_grid, self.scaler = anchor_grid.to(self.device), scaler.to(self.device)
def __call__(self, predicts):
preds_cls, preds_anc, preds_box = [], [], []
for layer_output in predicts:
pred_cls, pred_anc, pred_box = layer_output
preds_cls.append(rearrange(pred_cls, "B C h w -> B (h w) C"))
preds_anc.append(rearrange(pred_anc, "B A R h w -> B (h w) R A"))
preds_box.append(rearrange(pred_box, "B X h w -> B (h w) X"))
preds_cls = torch.concat(preds_cls, dim=1)
preds_anc = torch.concat(preds_anc, dim=1)
preds_box = torch.concat(preds_box, dim=1)
pred_LTRB = preds_box * self.scaler.view(1, -1, 1)
lt, rb = pred_LTRB.chunk(2, dim=-1)
preds_box = torch.cat([self.anchor_grid - lt, self.anchor_grid + rb], dim=-1)
return preds_cls, preds_anc, preds_box
def bbox_nms(cls_dist: Tensor, bbox: Tensor, nms_cfg: NMSConfig):
# TODO change function to class or set 80 to class_num instead of a number
cls_dist = cls_dist.sigmoid()
# filter class by confidence
cls_val, cls_idx = cls_dist.max(dim=-1, keepdim=True)
valid_mask = cls_val > nms_cfg.min_confidence
valid_cls = cls_idx[valid_mask].float()
valid_con = cls_val[valid_mask].float()
valid_box = bbox[valid_mask.repeat(1, 1, 4)].view(-1, 4)
batch_idx, *_ = torch.where(valid_mask)
nms_idx = batched_nms(valid_box, valid_cls, batch_idx, nms_cfg.min_iou)
predicts_nms = []
for idx in range(cls_dist.size(0)):
instance_idx = nms_idx[idx == batch_idx[nms_idx]]
predict_nms = torch.cat(
[valid_cls[instance_idx][:, None], valid_box[instance_idx], valid_con[instance_idx][:, None]], dim=-1
)
predicts_nms.append(predict_nms)
return predicts_nms
def calculate_map(predictions, ground_truths, iou_thresholds):
# TODO: Refactor this block
device = predictions.device
n_preds = predictions.size(0)
n_gts = (ground_truths[:, 0] != -1).sum()
ground_truths = ground_truths[:n_gts]
aps = []
ious = calculate_iou(predictions[:, 1:-1], ground_truths[:, 1:]) # [n_preds, n_gts]
for threshold in iou_thresholds:
tp = torch.zeros(n_preds, device=device)
fp = torch.zeros(n_preds, device=device)
max_iou, max_indices = torch.max(ious, dim=1)
above_threshold = max_iou >= threshold
matched_classes = predictions[:, 0] == ground_truths[max_indices, 0]
tp[above_threshold & matched_classes] = 1
fp[above_threshold & ~matched_classes] = 1
fp[max_iou < threshold] = 1
_, indices = torch.sort(predictions[:, 1], descending=True)
tp = tp[indices]
fp = fp[indices]
tp_cumsum = torch.cumsum(tp, dim=0)
fp_cumsum = torch.cumsum(fp, dim=0)
precision = tp_cumsum / (tp_cumsum + fp_cumsum + 1e-6)
recall = tp_cumsum / (n_gts + 1e-6)
recall_thresholds = torch.arange(0, 1, 0.1)
precision_at_recall = torch.zeros_like(recall_thresholds)
for i, r in enumerate(recall_thresholds):
precision_at_recall[i] = precision[recall >= r].max().item() if torch.any(recall >= r) else 0
ap = precision_at_recall.mean()
aps.append(ap)
mean_ap = torch.mean(torch.stack(aps))
return mean_ap, aps
|