File size: 5,801 Bytes
f2370d7 cbbfcfe 2dd2ae5 0174b5b cbbfcfe 68c38b8 60c4943 cbbfcfe 36eb083 cbbfcfe 36eb083 cbbfcfe 2dd2ae5 cbbfcfe 2dd2ae5 cbbfcfe 36eb083 cbbfcfe f080104 cbbfcfe 2dd2ae5 cbbfcfe 2dd2ae5 253e9b1 94fae81 cbbfcfe 2dd2ae5 cbbfcfe 5c767f2 cbbfcfe 2dd2ae5 cbbfcfe c9338ee 2dd2ae5 3eb85fd c9338ee 2dd2ae5 c9338ee 2dd2ae5 c9338ee 2dd2ae5 ac8e6e6 c9338ee 2dd2ae5 c9338ee 32405d5 ca2b494 32405d5 584d5bd d1477fc e530629 2dd2ae5 802cb12 584d5bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
from typing import Any, Dict, List, Tuple
import torch
import torch.nn.functional as F
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss
from yolo.config.config import Config, LossConfig
from yolo.utils.bounding_box_utils import BoxMatcher, Vec2Box, calculate_iou
from yolo.utils.logger import logger
class BCELoss(nn.Module):
def __init__(self) -> None:
super().__init__()
# TODO: Refactor the device, should be assign by config
# TODO: origin v9 assing pos_weight == 1?
self.bce = BCEWithLogitsLoss(reduction="none")
def forward(self, predicts_cls: Tensor, targets_cls: Tensor, cls_norm: Tensor) -> Any:
return self.bce(predicts_cls, targets_cls).sum() / cls_norm
class BoxLoss(nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(
self, predicts_bbox: Tensor, targets_bbox: Tensor, valid_masks: Tensor, box_norm: Tensor, cls_norm: Tensor
) -> Any:
valid_bbox = valid_masks[..., None].expand(-1, -1, 4)
picked_predict = predicts_bbox[valid_bbox].view(-1, 4)
picked_targets = targets_bbox[valid_bbox].view(-1, 4)
iou = calculate_iou(picked_predict, picked_targets, "ciou").diag()
loss_iou = 1.0 - iou
loss_iou = (loss_iou * box_norm).sum() / cls_norm
return loss_iou
class DFLoss(nn.Module):
def __init__(self, vec2box: Vec2Box, reg_max: int) -> None:
super().__init__()
self.anchors_norm = (vec2box.anchor_grid / vec2box.scaler[:, None])[None]
self.reg_max = reg_max
def forward(
self, predicts_anc: Tensor, targets_bbox: Tensor, valid_masks: Tensor, box_norm: Tensor, cls_norm: Tensor
) -> Any:
valid_bbox = valid_masks[..., None].expand(-1, -1, 4)
bbox_lt, bbox_rb = targets_bbox.chunk(2, -1)
targets_dist = torch.cat(((self.anchors_norm - bbox_lt), (bbox_rb - self.anchors_norm)), -1).clamp(
0, self.reg_max - 1.01
)
picked_targets = targets_dist[valid_bbox].view(-1)
picked_predict = predicts_anc[valid_bbox].view(-1, self.reg_max)
label_left, label_right = picked_targets.floor(), picked_targets.floor() + 1
weight_left, weight_right = label_right - picked_targets, picked_targets - label_left
loss_left = F.cross_entropy(picked_predict, label_left.to(torch.long), reduction="none")
loss_right = F.cross_entropy(picked_predict, label_right.to(torch.long), reduction="none")
loss_dfl = loss_left * weight_left + loss_right * weight_right
loss_dfl = loss_dfl.view(-1, 4).mean(-1)
loss_dfl = (loss_dfl * box_norm).sum() / cls_norm
return loss_dfl
class YOLOLoss:
def __init__(self, loss_cfg: LossConfig, vec2box: Vec2Box, class_num: int = 80, reg_max: int = 16) -> None:
self.class_num = class_num
self.vec2box = vec2box
self.cls = BCELoss()
self.dfl = DFLoss(vec2box, reg_max)
self.iou = BoxLoss()
self.matcher = BoxMatcher(loss_cfg.matcher, self.class_num, vec2box, reg_max)
def separate_anchor(self, anchors):
"""
separate anchor and bbouding box
"""
anchors_cls, anchors_box = torch.split(anchors, (self.class_num, 4), dim=-1)
anchors_box = anchors_box / self.vec2box.scaler[None, :, None]
return anchors_cls, anchors_box
def __call__(self, predicts: List[Tensor], targets: Tensor) -> Tuple[Tensor, Tensor, Tensor]:
predicts_cls, predicts_anc, predicts_box = predicts
# For each predicted targets, assign a best suitable ground truth box.
align_targets, valid_masks = self.matcher(targets, (predicts_cls.detach(), predicts_box.detach()))
targets_cls, targets_bbox = self.separate_anchor(align_targets)
predicts_box = predicts_box / self.vec2box.scaler[None, :, None]
cls_norm = max(targets_cls.sum(), 1)
box_norm = targets_cls.sum(-1)[valid_masks]
## -- CLS -- ##
loss_cls = self.cls(predicts_cls, targets_cls, cls_norm)
## -- IOU -- ##
loss_iou = self.iou(predicts_box, targets_bbox, valid_masks, box_norm, cls_norm)
## -- DFL -- ##
loss_dfl = self.dfl(predicts_anc, targets_bbox, valid_masks, box_norm, cls_norm)
return loss_iou, loss_dfl, loss_cls
class DualLoss:
def __init__(self, cfg: Config, vec2box) -> None:
loss_cfg = cfg.task.loss
self.loss = YOLOLoss(loss_cfg, vec2box, class_num=cfg.dataset.class_num, reg_max=cfg.model.anchor.reg_max)
self.aux_rate = loss_cfg.aux
self.iou_rate = loss_cfg.objective["BoxLoss"]
self.dfl_rate = loss_cfg.objective["DFLoss"]
self.cls_rate = loss_cfg.objective["BCELoss"]
def __call__(
self, aux_predicts: List[Tensor], main_predicts: List[Tensor], targets: Tensor
) -> Tuple[Tensor, Dict[str, float]]:
# TODO: Need Refactor this region, make it flexible!
aux_iou, aux_dfl, aux_cls = self.loss(aux_predicts, targets)
main_iou, main_dfl, main_cls = self.loss(main_predicts, targets)
total_loss = [
self.iou_rate * (aux_iou * self.aux_rate + main_iou),
self.dfl_rate * (aux_dfl * self.aux_rate + main_dfl),
self.cls_rate * (aux_cls * self.aux_rate + main_cls),
]
loss_dict = {
f"Loss/{name}Loss": value.detach().item() for name, value in zip(["Box", "DFL", "BCE"], total_loss)
}
return sum(total_loss), loss_dict
def create_loss_function(cfg: Config, vec2box) -> DualLoss:
# TODO: make it flexible, if cfg doesn't contain aux, only use SingleLoss
loss_function = DualLoss(cfg, vec2box)
logger.info(":white_check_mark: Success load loss function")
return loss_function
|