File size: 9,058 Bytes
1fe2937
c4cd90a
 
475302b
 
1197f7d
 
7d7e199
c4cd90a
 
7d7e199
c4cd90a
1197f7d
3e08dd8
1197f7d
475302b
3e08dd8
aba5422
0174b5b
1197f7d
 
4be6676
 
 
 
c0e2436
 
4be6676
 
 
 
 
 
 
 
 
 
 
 
c4cd90a
1d404e2
c4cd90a
 
1197f7d
c4cd90a
 
1d404e2
1197f7d
c4cd90a
 
1d404e2
1690354
 
1197f7d
c4cd90a
1d404e2
 
 
1197f7d
c4cd90a
 
 
 
1d404e2
 
1197f7d
 
dcceddd
1197f7d
 
 
 
 
 
3e08dd8
 
 
 
 
 
b4dad5e
 
 
3e08dd8
604c897
4be6676
604c897
 
4be6676
 
 
 
c0e2436
 
604c897
 
 
 
 
5fcc6be
604c897
 
4be6676
c0e2436
5fcc6be
c0e2436
5fcc6be
604c897
 
 
 
5b9da41
604c897
5b9da41
1197f7d
 
dcceddd
1197f7d
 
 
 
 
3e08dd8
 
 
 
5b9da41
 
 
b4dad5e
3e08dd8
7d7e199
 
1fe2937
 
 
 
 
 
 
60c4943
1fe2937
 
 
 
 
 
 
 
2ee7407
 
4056352
ecc08c8
 
 
 
3b31306
 
475302b
 
abc3992
475302b
 
 
 
 
aba5422
d5a73bd
475302b
 
aba5422
 
 
 
 
d5a73bd
 
 
475302b
 
d5a73bd
475302b
 
 
e0c8580
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21a413f
475302b
 
 
 
 
21a413f
 
8b3b3ef
21a413f
475302b
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
from copy import deepcopy
from math import exp
from pathlib import Path
from typing import List, Optional, Type, Union

import torch
import torch.distributed as dist
from lightning import LightningModule, Trainer
from lightning.pytorch.callbacks import Callback
from omegaconf import ListConfig
from torch import Tensor, no_grad
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR, SequentialLR, _LRScheduler

from yolo.config.config import IDX_TO_ID, NMSConfig, OptimizerConfig, SchedulerConfig
from yolo.model.yolo import YOLO
from yolo.utils.bounding_box_utils import Anc2Box, Vec2Box, bbox_nms, transform_bbox
from yolo.utils.logger import logger


def lerp(start: float, end: float, step: Union[int, float], total: int = 1):
    """
    Linearly interpolates between start and end values.

    start * (1 - step) + end * step

    Parameters:
        start (float): The starting value.
        end (float): The ending value.
        step (int): The current step in the interpolation process.
        total (int): The total number of steps.

    Returns:
        float: The interpolated value.
    """
    return start + (end - start) * step / total


class EMA(Callback):
    def __init__(self, decay: float = 0.9999, tau: float = 2000):
        super().__init__()
        logger.info(":chart_with_upwards_trend: Enable Model EMA")
        self.decay = decay
        self.tau = tau
        self.step = 0
        self.ema_state_dict = None

    def setup(self, trainer, pl_module, stage):
        pl_module.ema = deepcopy(pl_module.model)
        self.tau /= trainer.world_size
        for param in pl_module.ema.parameters():
            param.requires_grad = False

    def on_validation_start(self, trainer: "Trainer", pl_module: "LightningModule"):
        if self.ema_state_dict is None:
            self.ema_state_dict = deepcopy(pl_module.model.state_dict())
        pl_module.ema.load_state_dict(self.ema_state_dict)

    @no_grad()
    def on_train_batch_end(self, trainer: "Trainer", pl_module: "LightningModule", *args, **kwargs) -> None:
        self.step += 1
        decay_factor = self.decay * (1 - exp(-self.step / self.tau))
        for key, param in pl_module.model.state_dict().items():
            self.ema_state_dict[key] = lerp(param.detach(), self.ema_state_dict[key], decay_factor)


def create_optimizer(model: YOLO, optim_cfg: OptimizerConfig) -> Optimizer:
    """Create an optimizer for the given model parameters based on the configuration.

    Returns:
        An instance of the optimizer configured according to the provided settings.
    """
    optimizer_class: Type[Optimizer] = getattr(torch.optim, optim_cfg.type)

    bias_params = [p for name, p in model.named_parameters() if "bias" in name]
    norm_params = [p for name, p in model.named_parameters() if "weight" in name and "bn" in name]
    conv_params = [p for name, p in model.named_parameters() if "weight" in name and "bn" not in name]

    model_parameters = [
        {"params": bias_params, "momentum": 0.937, "weight_decay": 0},
        {"params": conv_params, "momentum": 0.937},
        {"params": norm_params, "momentum": 0.937, "weight_decay": 0},
    ]

    def next_epoch(self, batch_num, epoch_idx):
        self.min_lr = self.max_lr
        self.max_lr = [param["lr"] for param in self.param_groups]
        # TODO: load momentum from config instead a fix number
        #       0.937: Start Momentum
        #       0.8  : Normal Momemtum
        #       3    : The warm up epoch num
        self.min_mom = lerp(0.8, 0.937, min(epoch_idx, 3), 3)
        self.max_mom = lerp(0.8, 0.937, min(epoch_idx + 1, 3), 3)
        self.batch_num = batch_num
        self.batch_idx = 0

    def next_batch(self):
        self.batch_idx += 1
        lr_dict = dict()
        for lr_idx, param_group in enumerate(self.param_groups):
            min_lr, max_lr = self.min_lr[lr_idx], self.max_lr[lr_idx]
            param_group["lr"] = lerp(min_lr, max_lr, self.batch_idx, self.batch_num)
            param_group["momentum"] = lerp(self.min_mom, self.max_mom, self.batch_idx, self.batch_num)
            lr_dict[f"LR/{lr_idx}"] = param_group["lr"]
            lr_dict[f"momentum/{lr_idx}"] = param_group["momentum"]
        return lr_dict

    optimizer_class.next_batch = next_batch
    optimizer_class.next_epoch = next_epoch

    optimizer = optimizer_class(model_parameters, **optim_cfg.args)
    optimizer.max_lr = [0.1, 0, 0]
    return optimizer


def create_scheduler(optimizer: Optimizer, schedule_cfg: SchedulerConfig) -> _LRScheduler:
    """Create a learning rate scheduler for the given optimizer based on the configuration.

    Returns:
        An instance of the scheduler configured according to the provided settings.
    """
    scheduler_class: Type[_LRScheduler] = getattr(torch.optim.lr_scheduler, schedule_cfg.type)
    schedule = scheduler_class(optimizer, **schedule_cfg.args)
    if hasattr(schedule_cfg, "warmup"):
        wepoch = schedule_cfg.warmup.epochs
        lambda1 = lambda epoch: (epoch + 1) / wepoch if epoch < wepoch else 1
        lambda2 = lambda epoch: 10 - 9 * ((epoch + 1) / wepoch) if epoch < wepoch else 1
        warmup_schedule = LambdaLR(optimizer, lr_lambda=[lambda2, lambda1, lambda1])
        schedule = SequentialLR(optimizer, schedulers=[warmup_schedule, schedule], milestones=[wepoch - 1])
    return schedule


def initialize_distributed() -> None:
    rank = int(os.getenv("RANK", "0"))
    local_rank = int(os.getenv("LOCAL_RANK", "0"))
    world_size = int(os.getenv("WORLD_SIZE", "1"))

    torch.cuda.set_device(local_rank)
    dist.init_process_group(backend="nccl", rank=rank, world_size=world_size)
    logger.info(f"🔢 Initialized process group; rank: {rank}, size: {world_size}")
    return local_rank


def get_device(device_spec: Union[str, int, List[int]]) -> torch.device:
    ddp_flag = False
    if isinstance(device_spec, (list, ListConfig)):
        ddp_flag = True
        device_spec = initialize_distributed()
    if torch.cuda.is_available() and "cuda" in str(device_spec):
        return torch.device(device_spec), ddp_flag
    if not torch.cuda.is_available():
        if device_spec != "cpu":
            logger.warning(f"❎ Device spec: {device_spec} not support, Choosing CPU instead")
        return torch.device("cpu"), False

    device = torch.device(device_spec)
    return device, ddp_flag


class PostProcess:
    """
    TODO: function document
    scale back the prediction and do nms for pred_bbox
    """

    def __init__(self, converter: Union[Vec2Box, Anc2Box], nms_cfg: NMSConfig) -> None:
        self.converter = converter
        self.nms = nms_cfg

    def __call__(
        self, predict, rev_tensor: Optional[Tensor] = None, image_size: Optional[List[int]] = None
    ) -> List[Tensor]:
        if image_size is not None:
            self.converter.update(image_size)
        prediction = self.converter(predict["Main"])
        pred_class, _, pred_bbox = prediction[:3]
        pred_conf = prediction[3] if len(prediction) == 4 else None
        if rev_tensor is not None:
            pred_bbox = (pred_bbox - rev_tensor[:, None, 1:]) / rev_tensor[:, 0:1, None]
        pred_bbox = bbox_nms(pred_class, pred_bbox, self.nms, pred_conf)
        return pred_bbox


def collect_prediction(predict_json: List, local_rank: int) -> List:
    """
    Collects predictions from all distributed processes and gathers them on the main process (rank 0).

    Args:
        predict_json (List): The prediction data (can be of any type) generated by the current process.
        local_rank (int): The rank of the current process. Typically, rank 0 is the main process.

    Returns:
        List: The combined list of predictions from all processes if on rank 0, otherwise predict_json.
    """
    if dist.is_initialized() and local_rank == 0:
        all_predictions = [None for _ in range(dist.get_world_size())]
        dist.gather_object(predict_json, all_predictions, dst=0)
        predict_json = [item for sublist in all_predictions for item in sublist]
    elif dist.is_initialized():
        dist.gather_object(predict_json, None, dst=0)
    return predict_json


def predicts_to_json(img_paths, predicts, rev_tensor):
    """
    TODO: function document
    turn a batch of imagepath and predicts(n x 6 for each image) to a List of diction(Detection output)
    """
    batch_json = []
    for img_path, bboxes, box_reverse in zip(img_paths, predicts, rev_tensor):
        scale, shift = box_reverse.split([1, 4])
        bboxes = bboxes.clone()
        bboxes[:, 1:5] = (bboxes[:, 1:5] - shift[None]) / scale[None]
        bboxes[:, 1:5] = transform_bbox(bboxes[:, 1:5], "xyxy -> xywh")
        for cls, *pos, conf in bboxes:
            bbox = {
                "image_id": int(Path(img_path).stem),
                "category_id": IDX_TO_ID[int(cls)],
                "bbox": [float(p) for p in pos],
                "score": float(conf),
            }
            batch_json.append(bbox)
    return batch_json