File size: 4,017 Bytes
1197f7d
fa09d11
230a441
1197f7d
 
230a441
1197f7d
b5fa3f1
0174b5b
b5fa3f1
1197f7d
fa09d11
1197f7d
 
 
 
 
 
230a441
 
 
 
 
 
 
 
 
fa09d11
230a441
 
 
 
802cb12
1197f7d
 
fa09d11
1197f7d
 
 
fa09d11
1197f7d
 
fa09d11
1197f7d
 
 
 
 
 
 
fa09d11
1197f7d
 
 
5958998
1197f7d
 
 
1504257
fa09d11
97e9dcb
1197f7d
 
5958998
 
1197f7d
 
fa09d11
 
 
1197f7d
b038f54
1197f7d
802cb12
1197f7d
 
fa09d11
1197f7d
 
 
 
 
 
 
6a39ae1
fa09d11
2cbea31
 
 
230a441
fa09d11
 
dc1a0cf
fa09d11
dc1a0cf
230a441
dc1a0cf
230a441
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import zipfile
from pathlib import Path
from typing import Optional

import requests
from rich.progress import BarColumn, Progress, TextColumn, TimeRemainingColumn

from yolo.config.config import DatasetConfig
from yolo.utils.logger import logger


def download_file(url, destination: Path):
    """
    Downloads a file from the specified URL to the destination path with progress logging.
    """
    with requests.get(url, stream=True) as response:
        response.raise_for_status()
        total_size = int(response.headers.get("content-length", 0))
        with Progress(
            TextColumn("[progress.description]{task.description}"),
            BarColumn(),
            "[progress.percentage]{task.percentage:>3.1f}%",
            "•",
            "{task.completed}/{task.total} bytes",
            "•",
            TimeRemainingColumn(),
        ) as progress:
            task = progress.add_task(f"📥 Downloading {destination.name }...", total=total_size)
            with open(destination, "wb") as file:
                for data in response.iter_content(chunk_size=1024 * 1024):  # 1 MB chunks
                    file.write(data)
                    progress.update(task, advance=len(data))
    logger.info(":white_check_mark: Download completed.")


def unzip_file(source: Path, destination: Path):
    """
    Extracts a ZIP file to the specified directory and removes the ZIP file after extraction.
    """
    logger.info(f"Unzipping {source.name}...")
    with zipfile.ZipFile(source, "r") as zip_ref:
        zip_ref.extractall(destination)
    source.unlink()
    logger.info(f"Removed {source}.")


def check_files(directory, expected_count=None):
    """
    Returns True if the number of files in the directory matches expected_count, False otherwise.
    """
    files = [f.name for f in Path(directory).iterdir() if f.is_file()]
    return len(files) == expected_count if expected_count is not None else bool(files)


def prepare_dataset(dataset_cfg: DatasetConfig, task: str):
    """
    Prepares dataset by downloading and unzipping if necessary.
    """
    # TODO: do EDA of dataset
    data_dir = Path(dataset_cfg.path)
    for data_type, settings in dataset_cfg.auto_download.items():
        base_url = settings["base_url"]
        for dataset_type, dataset_args in settings.items():
            if dataset_type != "annotations" and dataset_cfg.get(task, task) != dataset_type:
                continue
            file_name = f"{dataset_args.get('file_name', dataset_type)}.zip"
            url = f"{base_url}{file_name}"
            local_zip_path = data_dir / file_name
            extract_to = data_dir / data_type if data_type != "annotations" else data_dir
            final_place = extract_to / dataset_type

            final_place.mkdir(parents=True, exist_ok=True)
            if check_files(final_place, dataset_args.get("file_num")):
                logger.info(f":white_check_mark: Dataset {dataset_type: <12} already verified.")
                continue

            if not local_zip_path.exists():
                download_file(url, local_zip_path)
            unzip_file(local_zip_path, extract_to)

            if not check_files(final_place, dataset_args.get("file_num")):
                logger.error(f"Error verifying the {dataset_type} dataset after extraction.")


def prepare_weight(download_link: Optional[str] = None, weight_path: Path = Path("v9-c.pt")):
    weight_name = weight_path.name
    if download_link is None:
        download_link = "https://github.com/WongKinYiu/yolov9mit/releases/download/v1.0-alpha/"
    weight_link = f"{download_link}{weight_name}"

    if not weight_path.parent.is_dir():
        weight_path.parent.mkdir(parents=True, exist_ok=True)

    if weight_path.exists():
        logger.info(f"Weight file '{weight_path}' already exists.")
    try:
        download_file(weight_link, weight_path)
    except requests.exceptions.RequestException as e:
        logger.warning(f"Failed to download the weight file: {e}")