YOLO / yolo /model /yolo.py
henry000's picture
✨ [Add] model logger to print model as table
0f9ffa2
raw
history blame
5.13 kB
from typing import Any, Dict, List, Union
import torch.nn as nn
from loguru import logger
from omegaconf import ListConfig, OmegaConf
from yolo.config.config import Config, Model, YOLOLayer
from yolo.tools.layer_helper import get_layer_map
from yolo.tools.log_helper import log_model
class YOLO(nn.Module):
"""
A preliminary YOLO (You Only Look Once) model class still under development.
Parameters:
model_cfg: Configuration for the YOLO model. Expected to define the layers,
parameters, and any other relevant configuration details.
"""
def __init__(self, model_cfg: Model, num_classes: int):
super(YOLO, self).__init__()
self.num_classes = num_classes
self.layer_map = get_layer_map() # Get the map Dict[str: Module]
self.model: List[YOLOLayer] = nn.ModuleList()
self.build_model(model_cfg.model)
log_model(self.model)
def build_model(self, model_arch: Dict[str, List[Dict[str, Dict[str, Dict]]]]):
self.layer_index = {}
output_dim, layer_idx = [3], 1
logger.info(f"🚜 Building YOLO")
for arch_name in model_arch:
logger.info(f" πŸ—οΈ Building {arch_name}")
for layer_idx, layer_spec in enumerate(model_arch[arch_name], start=layer_idx):
layer_type, layer_info = next(iter(layer_spec.items()))
layer_args = layer_info.get("args", {})
# Get input source
source = self.get_source_idx(layer_info.get("source", -1), layer_idx)
# Find in channels
if any(module in layer_type for module in ["Conv", "ELAN", "ADown", "CBLinear"]):
layer_args["in_channels"] = output_dim[source]
if "Detection" in layer_type:
layer_args["in_channels"] = [output_dim[idx] for idx in source]
layer_args["num_classes"] = self.num_classes
# create layers
layer = self.create_layer(layer_type, source, layer_info, **layer_args)
self.model.append(layer)
if layer.tags:
if layer.tags in self.layer_index:
raise ValueError(f"Duplicate tag '{layer_info['tags']}' found.")
self.layer_index[layer.tags] = layer_idx
out_channels = self.get_out_channels(layer_type, layer_args, output_dim, source)
output_dim.append(out_channels)
setattr(layer, "out_c", out_channels)
layer_idx += 1
def forward(self, x):
y = {0: x}
output = []
for index, layer in enumerate(self.model, start=1):
if isinstance(layer.source, list):
model_input = [y[idx] for idx in layer.source]
else:
model_input = y[layer.source]
x = layer(model_input)
if hasattr(layer, "save"):
y[index] = x
if layer.output:
output.append(x)
return output
def get_out_channels(self, layer_type: str, layer_args: dict, output_dim: list, source: Union[int, list]):
if any(module in layer_type for module in ["Conv", "ELAN", "ADown"]):
return layer_args["out_channels"]
if layer_type == "CBFuse":
return output_dim[source[-1]]
if layer_type in ["Pool", "UpSample"]:
return output_dim[source]
if layer_type == "Concat":
return sum(output_dim[idx] for idx in source)
if layer_type == "IDetect":
return None
def get_source_idx(self, source: Union[ListConfig, str, int], layer_idx: int):
if isinstance(source, ListConfig):
return [self.get_source_idx(index, layer_idx) for index in source]
if isinstance(source, str):
source = self.layer_index[source]
if source < 0:
source += layer_idx
if source > 0:
setattr(self.model[source - 1], "save", True)
return source
def create_layer(self, layer_type: str, source: Union[int, list], layer_info: Dict, **kwargs) -> YOLOLayer:
if layer_type in self.layer_map:
layer = self.layer_map[layer_type](**kwargs)
setattr(layer, "layer_type", layer_type)
setattr(layer, "source", source)
setattr(layer, "in_c", kwargs.get("in_channels", None))
setattr(layer, "output", layer_info.get("output", False))
setattr(layer, "tags", layer_info.get("tags", None))
return layer
else:
raise ValueError(f"Unsupported layer type: {layer_type}")
def get_model(cfg: Config) -> YOLO:
"""Constructs and returns a model from a Dictionary configuration file.
Args:
config_file (dict): The configuration file of the model.
Returns:
YOLO: An instance of the model defined by the given configuration.
"""
OmegaConf.set_struct(cfg.model, False)
model = YOLO(cfg.model, cfg.hyper.data.class_num)
logger.info("βœ… Success load model")
return model