YOLO / yolo /model /yolo.py
henry000's picture
πŸ”€ [Merge] remote-tracking branch 'origin/MODEL' into TEST
1c7883f
raw
history blame
7.57 kB
from collections import OrderedDict
from pathlib import Path
from typing import Dict, List, Union
import torch
from omegaconf import ListConfig, OmegaConf
from torch import nn
from yolo.config.config import ModelConfig, YOLOLayer
from yolo.tools.dataset_preparation import prepare_weight
from yolo.utils.logger import logger
from yolo.utils.module_utils import get_layer_map
class YOLO(nn.Module):
"""
A preliminary YOLO (You Only Look Once) model class still under development.
Parameters:
model_cfg: Configuration for the YOLO model. Expected to define the layers,
parameters, and any other relevant configuration details.
"""
def __init__(self, model_cfg: ModelConfig, class_num: int = 80):
super(YOLO, self).__init__()
self.num_classes = class_num
self.layer_map = get_layer_map() # Get the map Dict[str: Module]
self.model: List[YOLOLayer] = nn.ModuleList()
self.reg_max = getattr(model_cfg.anchor, "reg_max", 16)
self.build_model(model_cfg.model)
def build_model(self, model_arch: Dict[str, List[Dict[str, Dict[str, Dict]]]]):
self.layer_index = {}
output_dim, layer_idx = [3], 1
logger.info(f":tractor: Building YOLO")
for arch_name in model_arch:
if model_arch[arch_name]:
logger.info(f" :building_construction: Building {arch_name}")
for layer_idx, layer_spec in enumerate(model_arch[arch_name], start=layer_idx):
layer_type, layer_info = next(iter(layer_spec.items()))
layer_args = layer_info.get("args", {})
# Get input source
source = self.get_source_idx(layer_info.get("source", -1), layer_idx)
# Find in channels
if any(module in layer_type for module in ["Conv", "ELAN", "ADown", "AConv", "CBLinear"]):
layer_args["in_channels"] = output_dim[source]
if any(module in layer_type for module in ["Detection", "Segmentation", "Classification"]):
if isinstance(source, list):
layer_args["in_channels"] = [output_dim[idx] for idx in source]
else:
layer_args["in_channel"] = output_dim[source]
layer_args["num_classes"] = self.num_classes
layer_args["reg_max"] = self.reg_max
# create layers
layer = self.create_layer(layer_type, source, layer_info, **layer_args)
self.model.append(layer)
if layer.tags:
if layer.tags in self.layer_index:
raise ValueError(f"Duplicate tag '{layer_info['tags']}' found.")
self.layer_index[layer.tags] = layer_idx
out_channels = self.get_out_channels(layer_type, layer_args, output_dim, source)
output_dim.append(out_channels)
setattr(layer, "out_c", out_channels)
layer_idx += 1
def forward(self, x):
y = {0: x}
output = dict()
for index, layer in enumerate(self.model, start=1):
if isinstance(layer.source, list):
model_input = [y[idx] for idx in layer.source]
else:
model_input = y[layer.source]
x = layer(model_input)
y[-1] = x
if layer.usable:
y[index] = x
if layer.output:
output[layer.tags] = x
return output
def get_out_channels(self, layer_type: str, layer_args: dict, output_dim: list, source: Union[int, list]):
if hasattr(layer_args, "out_channels"):
return layer_args["out_channels"]
if layer_type == "CBFuse":
return output_dim[source[-1]]
if isinstance(source, int):
return output_dim[source]
if isinstance(source, list):
return sum(output_dim[idx] for idx in source)
def get_source_idx(self, source: Union[ListConfig, str, int], layer_idx: int):
if isinstance(source, ListConfig):
return [self.get_source_idx(index, layer_idx) for index in source]
if isinstance(source, str):
source = self.layer_index[source]
if source < -1:
source += layer_idx
if source > 0: # Using Previous Layer's Output
self.model[source - 1].usable = True
return source
def create_layer(self, layer_type: str, source: Union[int, list], layer_info: Dict, **kwargs) -> YOLOLayer:
if layer_type in self.layer_map:
layer = self.layer_map[layer_type](**kwargs)
setattr(layer, "layer_type", layer_type)
setattr(layer, "source", source)
setattr(layer, "in_c", kwargs.get("in_channels", None))
setattr(layer, "output", layer_info.get("output", False))
setattr(layer, "tags", layer_info.get("tags", None))
setattr(layer, "usable", 0)
return layer
else:
raise ValueError(f"Unsupported layer type: {layer_type}")
def save_load_weights(self, weights: Union[Path, OrderedDict]):
"""
Update the model's weights with the provided weights.
args:
weights: A OrderedDict containing the new weights.
"""
if isinstance(weights, Path):
weights = torch.load(weights, map_location=torch.device("cpu"), weights_only=False)
if "model_state_dict" in weights:
weights = weights["model_state_dict"]
model_state_dict = self.model.state_dict()
# TODO1: autoload old version weight
# TODO2: weight transform if num_class difference
error_dict = {"Mismatch": set(), "Not Found": set()}
for model_key, model_weight in model_state_dict.items():
if model_key not in weights:
error_dict["Not Found"].add(tuple(model_key.split(".")[:-2]))
continue
if model_weight.shape != weights[model_key].shape:
error_dict["Mismatch"].add(tuple(model_key.split(".")[:-2]))
continue
model_state_dict[model_key] = weights[model_key]
for error_name, error_set in error_dict.items():
for weight_name in error_set:
logger.warning(f":warning: Weight {error_name} for key: {'.'.join(weight_name)}")
self.model.load_state_dict(model_state_dict)
def create_model(model_cfg: ModelConfig, weight_path: Union[bool, Path] = True, class_num: int = 80) -> YOLO:
"""Constructs and returns a model from a Dictionary configuration file.
Args:
config_file (dict): The configuration file of the model.
Returns:
YOLO: An instance of the model defined by the given configuration.
"""
OmegaConf.set_struct(model_cfg, False)
model = YOLO(model_cfg, class_num)
if weight_path:
if weight_path == True:
weight_path = Path("weights") / f"{model_cfg.name}.pt"
elif isinstance(weight_path, str):
weight_path = Path(weight_path)
if not weight_path.exists():
logger.info(f"🌐 Weight {weight_path} not found, try downloading")
prepare_weight(weight_path=weight_path)
if weight_path.exists():
model.save_load_weights(weight_path)
logger.info(":white_check_mark: Success load model & weight")
else:
logger.info(":white_check_mark: Success load model")
return model