YOLO / yolo /tools /trainer.py
henry000's picture
🚚 [Move] All model code to yolo/
1197f7d
raw
history blame
2.3 kB
import torch
from loguru import logger
from tqdm import tqdm
from yolo.config.config import TrainConfig
from yolo.model.yolo import YOLO
from yolo.tools.model_helper import EMA, get_optimizer, get_scheduler
from yolo.utils.loss import get_loss_function
class Trainer:
def __init__(self, model: YOLO, train_cfg: TrainConfig, device):
self.model = model.to(device)
self.device = device
self.optimizer = get_optimizer(model.parameters(), train_cfg.optimizer)
self.scheduler = get_scheduler(self.optimizer, train_cfg.scheduler)
self.loss_fn = get_loss_function()
if train_cfg.ema.get("enabled", False):
self.ema = EMA(model, decay=train_cfg.ema.decay)
else:
self.ema = None
def train_one_batch(self, data, targets):
data, targets = data.to(self.device), targets.to(self.device)
self.optimizer.zero_grad()
outputs = self.model(data)
loss = self.loss_fn(outputs, targets)
loss.backward()
self.optimizer.step()
if self.ema:
self.ema.update()
return loss.item()
def train_one_epoch(self, dataloader):
self.model.train()
total_loss = 0
for data, targets in tqdm(dataloader, desc="Training"):
loss = self.train_one_batch(data, targets)
total_loss += loss
if self.scheduler:
self.scheduler.step()
return total_loss / len(dataloader)
def save_checkpoint(self, epoch, filename="checkpoint.pt"):
checkpoint = {
"epoch": epoch,
"model_state_dict": self.model.state_dict(),
"optimizer_state_dict": self.optimizer.state_dict(),
}
if self.ema:
self.ema.apply_shadow()
checkpoint["model_state_dict_ema"] = self.model.state_dict()
self.ema.restore()
torch.save(checkpoint, filename)
def train(self, dataloader, num_epochs):
logger.info("start train")
for epoch in range(num_epochs):
epoch_loss = self.train_one_epoch(dataloader)
logger.info(f"Epoch {epoch+1}/{num_epochs}, Loss: {epoch_loss:.4f}")
if (epoch + 1) % 5 == 0:
self.save_checkpoint(epoch, f"checkpoint_epoch_{epoch+1}.pth")