|
import sys |
|
from pathlib import Path |
|
|
|
import hydra |
|
|
|
project_root = Path(__file__).resolve().parent.parent |
|
sys.path.append(str(project_root)) |
|
|
|
from yolo.config.config import Config |
|
from yolo.model.yolo import create_model |
|
from yolo.tools.data_loader import create_dataloader |
|
from yolo.tools.solver import ModelTester, ModelTrainer, ModelValidator |
|
from yolo.utils.bounding_box_utils import Vec2Box |
|
from yolo.utils.deploy_utils import FastModelLoader |
|
from yolo.utils.logging_utils import ProgressLogger |
|
from yolo.utils.model_utils import get_device |
|
|
|
|
|
@hydra.main(config_path="config", config_name="config", version_base=None) |
|
def main(cfg: Config): |
|
progress = ProgressLogger(cfg, exp_name=cfg.name) |
|
device, use_ddp = get_device(cfg.device) |
|
dataloader = create_dataloader(cfg.task.data, cfg.dataset, cfg.task.task, use_ddp) |
|
if getattr(cfg.task, "fast_inference", False): |
|
model = FastModelLoader(cfg).load_model(device) |
|
else: |
|
model = create_model(cfg.model, class_num=cfg.class_num, weight_path=cfg.weight) |
|
model = model.to(device) |
|
|
|
vec2box = Vec2Box(model, cfg.image_size, device) |
|
|
|
if cfg.task.task == "train": |
|
trainer = ModelTrainer(cfg, model, vec2box, progress, device, use_ddp) |
|
trainer.solve(dataloader) |
|
|
|
if cfg.task.task == "inference": |
|
tester = ModelTester(cfg, model, vec2box, progress, device) |
|
tester.solve(dataloader) |
|
|
|
if cfg.task.task == "validation": |
|
valider = ModelValidator(cfg.task, model, vec2box, progress, device) |
|
valider.solve(dataloader) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|