YOLO / yolo /model /module.py
henry000's picture
πŸ› [Fix] a bug in deploying TensorRT model
200b5c1
raw
history blame
23.5 kB
from typing import Any, Dict, List, Optional, Tuple
import torch
import torch.nn.functional as F
from einops import rearrange
from loguru import logger
from torch import Tensor, nn
from torch.nn.common_types import _size_2_t
from yolo.utils.bounding_box_utils import generate_anchors
from yolo.utils.module_utils import auto_pad, create_activation_function, round_up
# ----------- Basic Class ----------- #
class Conv(nn.Module):
"""A basic convolutional block that includes convolution, batch normalization, and activation."""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: _size_2_t,
*,
activation: Optional[str] = "SiLU",
**kwargs,
):
super().__init__()
kwargs.setdefault("padding", auto_pad(kernel_size, **kwargs))
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, bias=False, **kwargs)
self.bn = nn.BatchNorm2d(out_channels, eps=1e-3, momentum=3e-2)
self.act = create_activation_function(activation)
def forward(self, x: Tensor) -> Tensor:
return self.act(self.bn(self.conv(x)))
class Pool(nn.Module):
"""A generic pooling block supporting 'max' and 'avg' pooling methods."""
def __init__(self, method: str = "max", kernel_size: _size_2_t = 2, **kwargs):
super().__init__()
kwargs.setdefault("padding", auto_pad(kernel_size, **kwargs))
pool_classes = {"max": nn.MaxPool2d, "avg": nn.AvgPool2d}
self.pool = pool_classes[method.lower()](kernel_size=kernel_size, **kwargs)
def forward(self, x: Tensor) -> Tensor:
return self.pool(x)
# ----------- Detection Class ----------- #
class Detection(nn.Module):
"""A single YOLO Detection head for detection models"""
def __init__(self, in_channels: Tuple[int], num_classes: int, *, reg_max: int = 16, use_group: bool = True):
super().__init__()
groups = 4 if use_group else 1
anchor_channels = 4 * reg_max
first_neck, in_channels = in_channels
anchor_neck = max(round_up(first_neck // 4, groups), anchor_channels, reg_max)
class_neck = max(first_neck, min(num_classes * 2, 128))
self.anchor_conv = nn.Sequential(
Conv(in_channels, anchor_neck, 3),
Conv(anchor_neck, anchor_neck, 3, groups=groups),
nn.Conv2d(anchor_neck, anchor_channels, 1, groups=groups),
)
self.class_conv = nn.Sequential(
Conv(in_channels, class_neck, 3), Conv(class_neck, class_neck, 3), nn.Conv2d(class_neck, num_classes, 1)
)
self.anc2vec = Anchor2Vec(reg_max=reg_max)
self.anchor_conv[-1].bias.data.fill_(1.0)
self.class_conv[-1].bias.data.fill_(-10)
def forward(self, x: Tensor) -> Tuple[Tensor]:
anchor_x = self.anchor_conv(x)
class_x = self.class_conv(x)
anchor_x, vector_x = self.anc2vec(anchor_x)
return class_x, anchor_x, vector_x
class MultiheadDetection(nn.Module):
"""Mutlihead Detection module for Dual detect or Triple detect"""
def __init__(self, in_channels: List[int], num_classes: int, **head_kwargs):
super().__init__()
self.heads = nn.ModuleList(
[Detection((in_channels[0], in_channel), num_classes, **head_kwargs) for in_channel in in_channels]
)
def forward(self, x_list: List[torch.Tensor]) -> List[torch.Tensor]:
return [head(x) for x, head in zip(x_list, self.heads)]
class Anchor2Vec(nn.Module):
def __init__(self, reg_max: int = 16) -> None:
super().__init__()
reverse_reg = torch.arange(reg_max, dtype=torch.float32).view(1, reg_max, 1, 1, 1)
self.anc2vec = nn.Conv3d(in_channels=reg_max, out_channels=1, kernel_size=1, bias=False)
self.anc2vec.weight = nn.Parameter(reverse_reg, requires_grad=False)
def forward(self, anchor_x: Tensor) -> Tensor:
anchor_x = rearrange(anchor_x, "B (P R) h w -> B R P h w", P=4)
vector_x = anchor_x.softmax(dim=1)
vector_x = self.anc2vec(vector_x)[:, 0]
return anchor_x, vector_x
# ----------- Backbone Class ----------- #
class RepConv(nn.Module):
"""A convolutional block that combines two convolution layers (kernel and point-wise)."""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: _size_2_t = 3,
*,
activation: Optional[str] = "SiLU",
**kwargs,
):
super().__init__()
self.act = create_activation_function(activation)
self.conv1 = Conv(in_channels, out_channels, kernel_size, activation=False, **kwargs)
self.conv2 = Conv(in_channels, out_channels, 1, activation=False, **kwargs)
def forward(self, x: Tensor) -> Tensor:
return self.act(self.conv1(x) + self.conv2(x))
class RepNBottleneck(nn.Module):
"""A bottleneck block with optional residual connections."""
def __init__(
self,
in_channels: int,
out_channels: int,
*,
kernel_size: Tuple[int, int] = (3, 3),
residual: bool = True,
expand: float = 1.0,
**kwargs,
):
super().__init__()
neck_channels = int(out_channels * expand)
self.conv1 = RepConv(in_channels, neck_channels, kernel_size[0], **kwargs)
self.conv2 = Conv(neck_channels, out_channels, kernel_size[1], **kwargs)
self.residual = residual
if residual and (in_channels != out_channels):
self.residual = False
logger.warning(
"Residual connection disabled: in_channels ({}) != out_channels ({})", in_channels, out_channels
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
y = self.conv2(self.conv1(x))
return x + y if self.residual else y
class RepNCSP(nn.Module):
"""RepNCSP block with convolutions, split, and bottleneck processing."""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int = 1,
*,
csp_expand: float = 0.5,
repeat_num: int = 1,
neck_args: Dict[str, Any] = {},
**kwargs,
):
super().__init__()
neck_channels = int(out_channels * csp_expand)
self.conv1 = Conv(in_channels, neck_channels, kernel_size, **kwargs)
self.conv2 = Conv(in_channels, neck_channels, kernel_size, **kwargs)
self.conv3 = Conv(2 * neck_channels, out_channels, kernel_size, **kwargs)
self.bottleneck = nn.Sequential(
*[RepNBottleneck(neck_channels, neck_channels, **neck_args) for _ in range(repeat_num)]
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x1 = self.bottleneck(self.conv1(x))
x2 = self.conv2(x)
return self.conv3(torch.cat((x1, x2), dim=1))
class ELAN(nn.Module):
"""ELAN structure."""
def __init__(
self,
in_channels: int,
out_channels: int,
part_channels: int,
*,
process_channels: Optional[int] = None,
**kwargs,
):
super().__init__()
if process_channels is None:
process_channels = part_channels // 2
self.conv1 = Conv(in_channels, part_channels, 1, **kwargs)
self.conv2 = Conv(part_channels // 2, process_channels, 3, padding=1, **kwargs)
self.conv3 = Conv(process_channels, process_channels, 3, padding=1, **kwargs)
self.conv4 = Conv(part_channels + 2 * process_channels, out_channels, 1, **kwargs)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x1, x2 = self.conv1(x).chunk(2, 1)
x3 = self.conv2(x2)
x4 = self.conv3(x3)
x5 = self.conv4(torch.cat([x1, x2, x3, x4], dim=1))
return x5
class RepNCSPELAN(nn.Module):
"""RepNCSPELAN block combining RepNCSP blocks with ELAN structure."""
def __init__(
self,
in_channels: int,
out_channels: int,
part_channels: int,
*,
process_channels: Optional[int] = None,
csp_args: Dict[str, Any] = {},
csp_neck_args: Dict[str, Any] = {},
**kwargs,
):
super().__init__()
if process_channels is None:
process_channels = part_channels // 2
self.conv1 = Conv(in_channels, part_channels, 1, **kwargs)
self.conv2 = nn.Sequential(
RepNCSP(part_channels // 2, process_channels, neck_args=csp_neck_args, **csp_args),
Conv(process_channels, process_channels, 3, padding=1, **kwargs),
)
self.conv3 = nn.Sequential(
RepNCSP(process_channels, process_channels, neck_args=csp_neck_args, **csp_args),
Conv(process_channels, process_channels, 3, padding=1, **kwargs),
)
self.conv4 = Conv(part_channels + 2 * process_channels, out_channels, 1, **kwargs)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x1, x2 = self.conv1(x).chunk(2, 1)
x3 = self.conv2(x2)
x4 = self.conv3(x3)
x5 = self.conv4(torch.cat([x1, x2, x3, x4], dim=1))
return x5
class AConv(nn.Module):
"""Downsampling module combining average and max pooling with convolution for feature reduction."""
def __init__(self, in_channels: int, out_channels: int):
super().__init__()
mid_layer = {"kernel_size": 3, "stride": 2}
self.avg_pool = Pool("avg", kernel_size=2, stride=1)
self.conv = Conv(in_channels, out_channels, **mid_layer)
def forward(self, x: Tensor) -> Tensor:
x = self.avg_pool(x)
x = self.conv(x)
return x
class ADown(nn.Module):
"""Downsampling module combining average and max pooling with convolution for feature reduction."""
def __init__(self, in_channels: int, out_channels: int):
super().__init__()
half_in_channels = in_channels // 2
half_out_channels = out_channels // 2
mid_layer = {"kernel_size": 3, "stride": 2}
self.avg_pool = Pool("avg", kernel_size=2, stride=1)
self.conv1 = Conv(half_in_channels, half_out_channels, **mid_layer)
self.max_pool = Pool("max", **mid_layer)
self.conv2 = Conv(half_in_channels, half_out_channels, kernel_size=1)
def forward(self, x: Tensor) -> Tensor:
x = self.avg_pool(x)
x1, x2 = x.chunk(2, dim=1)
x1 = self.conv1(x1)
x2 = self.max_pool(x2)
x2 = self.conv2(x2)
return torch.cat((x1, x2), dim=1)
class CBLinear(nn.Module):
"""Convolutional block that outputs multiple feature maps split along the channel dimension."""
def __init__(self, in_channels: int, out_channels: List[int], kernel_size: int = 1, **kwargs):
super(CBLinear, self).__init__()
kwargs.setdefault("padding", auto_pad(kernel_size, **kwargs))
self.conv = nn.Conv2d(in_channels, sum(out_channels), kernel_size, **kwargs)
self.out_channels = list(out_channels)
def forward(self, x: Tensor) -> Tuple[Tensor]:
x = self.conv(x)
return x.split(self.out_channels, dim=1)
class SPPELAN(nn.Module):
"""SPPELAN module comprising multiple pooling and convolution layers."""
def __init__(self, in_channels: int, out_channels: int, neck_channels: Optional[int] = None):
super(SPPELAN, self).__init__()
neck_channels = neck_channels or out_channels // 2
self.conv1 = Conv(in_channels, neck_channels, kernel_size=1)
self.pools = nn.ModuleList([Pool("max", 5, stride=1) for _ in range(3)])
self.conv5 = Conv(4 * neck_channels, out_channels, kernel_size=1)
def forward(self, x: Tensor) -> Tensor:
features = [self.conv1(x)]
for pool in self.pools:
features.append(pool(features[-1]))
return self.conv5(torch.cat(features, dim=1))
class UpSample(nn.Module):
def __init__(self, **kwargs):
super().__init__()
self.UpSample = nn.Upsample(**kwargs)
def forward(self, x):
return self.UpSample(x)
class CBFuse(nn.Module):
def __init__(self, index: List[int], mode: str = "nearest"):
super().__init__()
self.idx = index
self.mode = mode
def forward(self, x_list: List[torch.Tensor]) -> List[Tensor]:
target = x_list[-1]
target_size = target.shape[2:] # Batch, Channel, H, W
res = [F.interpolate(x[pick_id], size=target_size, mode=self.mode) for pick_id, x in zip(self.idx, x_list)]
out = torch.stack(res + [target]).sum(dim=0)
return out
############# Waiting For Refactor #############
# ResNet
class Res(nn.Module):
# ResNet bottleneck
def __init__(self, in_channels, out_channels, groups=1, act=nn.ReLU(), ratio=0.25):
super().__init__()
h_channels = int(in_channels * ratio)
self.cv1 = Conv(in_channels, h_channels, 1, 1, act=act)
self.cv2 = Conv(h_channels, h_channels, 3, 1, groups=groups, act=act)
self.cv3 = Conv(h_channels, out_channels, 1, 1, act=act)
def forward(self, x):
return x + self.cv3(self.cv2(self.cv1(x)))
class RepRes(nn.Module):
# RepResNet bottleneck
def __init__(self, in_channels, out_channels, groups=1, act=nn.ReLU(), ratio=0.25):
super().__init__()
h_channels = int(in_channels * ratio)
self.cv1 = Conv(in_channels, h_channels, 1, 1, act=act)
self.cv2 = RepConv(h_channels, h_channels, 3, 1, groups=groups, act=act)
self.cv3 = Conv(h_channels, out_channels, 1, 1, act=act)
def forward(self, x):
return x + self.cv3(self.cv2(self.cv1(x)))
class ConvBlock(nn.Module):
# ConvBlock
def __init__(self, in_channels, repeat=1, act=nn.ReLU(), ratio=1.0):
super().__init__()
h_channels = int(in_channels * ratio)
self.cv1 = (
Conv(in_channels, in_channels, 3, 1, act=act)
if repeat == 1
else Conv(in_channels, h_channels, 3, 1, act=act)
)
self.cb = (
nn.Sequential(*(Conv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat - 2)))
if repeat > 2
else nn.Identity()
)
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
def forward(self, x):
return self.cv2(self.cb(self.cv1(x)))
class RepConvBlock(nn.Module):
# ConvBlock
def __init__(self, in_channels, repeat=1, act=nn.ReLU(), ratio=1.0):
super().__init__()
h_channels = int(in_channels * ratio)
self.cv1 = (
Conv(in_channels, in_channels, 3, 1, act=act)
if repeat == 1
else RepConv(in_channels, h_channels, 3, 1, act=act)
)
self.cb = (
nn.Sequential(*(RepConv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat - 2)))
if repeat > 2
else nn.Identity()
)
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
def forward(self, x):
return self.cv2(self.cb(self.cv1(x)))
class ResConvBlock(nn.Module):
# ResConvBlock
def __init__(self, in_channels, repeat=1, act=nn.ReLU(), ratio=1.0):
super().__init__()
h_channels = int(in_channels * ratio)
self.cv1 = (
Conv(in_channels, in_channels, 3, 1, act=act)
if repeat == 1
else Conv(in_channels, h_channels, 3, 1, act=act)
)
self.cb = (
nn.Sequential(*(Conv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat - 2)))
if repeat > 2
else nn.Identity()
)
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
def forward(self, x):
return x + self.cv2(self.cb(self.cv1(x)))
class ResRepConvBlock(nn.Module):
# ResConvBlock
def __init__(self, in_channels, repeat=1, act=nn.ReLU(), ratio=1.0):
super().__init__()
h_channels = int(in_channels * ratio)
self.cv1 = (
Conv(in_channels, in_channels, 3, 1, act=act)
if repeat == 1
else RepConv(in_channels, h_channels, 3, 1, act=act)
)
self.cb = (
nn.Sequential(*(RepConv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat - 2)))
if repeat > 2
else nn.Identity()
)
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
def forward(self, x):
return x + self.cv2(self.cb(self.cv1(x)))
# Darknet
class Dark(nn.Module):
# DarkNet bottleneck
def __init__(self, in_channels, out_channels, groups=1, act=nn.ReLU(), ratio=0.5):
super().__init__()
h_channels = int(in_channels * ratio)
self.cv1 = Conv(in_channels, h_channels, 1, 1, act=act)
self.cv2 = Conv(h_channels, out_channels, 3, 1, groups=groups, act=act)
def forward(self, x):
return x + self.cv2(self.cv1(x))
class RepDark(nn.Module):
# RepDarkNet bottleneck
def __init__(self, in_channels, out_channels, groups=1, act=nn.ReLU(), ratio=0.5):
super().__init__()
h_channels = int(in_channels * ratio)
self.cv1 = RepConv(in_channels, h_channels, 3, 1, groups=groups, act=act)
self.cv2 = Conv(h_channels, out_channels, 1, 1, act=act)
def forward(self, x):
return x + self.cv2(self.cv1(x))
# CSPNet
class CSP(nn.Module):
# CSPNet
def __init__(self, in_channels, out_channels, repeat=1, cb_repeat=2, act=nn.ReLU()):
super().__init__()
h_channels = in_channels // 2
self.cv1 = Conv(in_channels, in_channels, 1, 1, act=act)
self.cb = nn.Sequential(*(ResConvBlock(h_channels, act=act, repeat=cb_repeat) for _ in range(repeat)))
self.cv2 = Conv(2 * h_channels, out_channels, 1, 1, act=act)
def forward(self, x):
x = list(self.cv1(x).chunk(2, 1))
x = torch.cat((self.cb(x[0]), x[1]), 1)
x = self.cv2(x)
return x
class CSPDark(nn.Module):
# CSPNet
def __init__(self, in_channels, out_channels, repeat=1, groups=1, act=nn.ReLU(), ratio=1.0):
super().__init__()
h_channels = in_channels // 2
self.cv1 = Conv(in_channels, in_channels, 1, 1, act=act)
self.cb = nn.Sequential(
*(Dark(h_channels, h_channels, groups=groups, act=act, ratio=ratio) for _ in range(repeat))
)
self.cv2 = Conv(2 * h_channels, out_channels, 1, 1, act=act)
def forward(self, x):
y = list(self.cv1(x).chunk(2, 1))
return self.cv2(torch.cat((self.cb(y[0]), y[1]), 1))
class CSPELAN(nn.Module):
# ELAN
def __init__(self, in_channels, out_channels, med_channels, elan_repeat=2, cb_repeat=2, ratio=1.0):
super().__init__()
h_channels = med_channels // 2
self.cv1 = Conv(in_channels, med_channels, 1, 1)
self.cb = nn.ModuleList(CSP(h_channels, h_channels, repeat=cb_repeat, ratio=ratio) for _ in range(elan_repeat))
self.cv2 = Conv((2 + elan_repeat) * h_channels, out_channels, 1, 1)
def forward(self, x):
y = list(self.cv1(x).chunk(2, 1))
y.extend((m(y[-1])) for m in self.cb)
return self.cv2(torch.cat(y, 1))
class Concat(nn.Module):
def __init__(self, dim=1):
super(Concat, self).__init__()
self.dim = dim
def forward(self, x):
return torch.cat(x, self.dim)
# TODO: check if Mit
class SPPCSPConv(nn.Module):
# CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
def __init__(self, in_channels, out_channels, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
super(SPPCSPConv, self).__init__()
c_ = int(2 * out_channels * e) # hidden channels
self.cv1 = Conv(in_channels, c_, 1)
self.cv2 = Conv(in_channels, c_, 1)
self.cv3 = Conv(c_, c_, 3)
self.cv4 = Conv(c_, c_, 1)
self.m = nn.ModuleList([Pool(method="max", kernel_size=x, stride=1, padding=x // 2) for x in k])
self.cv5 = Conv(4 * c_, c_, 1)
self.cv6 = Conv(c_, c_, 3)
self.cv7 = Conv(2 * c_, out_channels, 1)
def forward(self, x):
x1 = self.cv4(self.cv3(self.cv1(x)))
y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))
y2 = self.cv2(x)
return self.cv7(torch.cat((y1, y2), dim=1))
class ImplicitA(nn.Module):
"""
Implement YOLOR - implicit knowledge(Add), paper: https://arxiv.org/abs/2105.04206
"""
def __init__(self, channel: int, mean: float = 0.0, std: float = 0.02):
super().__init__()
self.channel = channel
self.mean = mean
self.std = std
self.implicit = nn.Parameter(torch.empty(1, channel, 1, 1))
nn.init.normal_(self.implicit, mean=mean, std=self.std)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.implicit + x
class ImplicitM(nn.Module):
"""
Implement YOLOR - implicit knowledge(multiply), paper: https://arxiv.org/abs/2105.04206
"""
def __init__(self, channel: int, mean: float = 1.0, std: float = 0.02):
super().__init__()
self.channel = channel
self.mean = mean
self.std = std
self.implicit = nn.Parameter(torch.empty(1, channel, 1, 1))
nn.init.normal_(self.implicit, mean=self.mean, std=self.std)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.implicit * x
class IDetect(nn.Module):
"""
#TODO: Add Detect class, change IDetect base class
"""
stride = None # strides computed during build
export = False # onnx export
end2end = False
include_nms = False
concat = False
def __init__(self, nc=80, anchors=(), ch=()): # detection layer
super(IDetect, self).__init__()
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
self.nl = len(anchors) # number of detection layers
self.na = len(anchors[0]) // 2 # number of anchors
self.grid = [torch.zeros(1)] * self.nl # init grid
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
self.register_buffer("anchors", a) # shape(nl,na,2)
self.register_buffer("anchor_grid", a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
self.ia = nn.ModuleList(ImplicitA(x) for x in ch)
self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch)
def forward(self, x):
# x = x.copy() # for profiling
z = [] # inference output
self.training |= self.export
for i in range(self.nl):
x[i] = self.m[i](self.ia[i](x[i])) # conv
x[i] = self.im[i](x[i])
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if not self.training: # inference
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
y = x[i].sigmoid()
y[..., 0:2] = (y[..., 0:2] * 2.0 - 0.5 + self.grid[i]) * self.stride[i] # xy
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
z.append(y.view(bs, -1, self.no))
return x if self.training else (torch.cat(z, 1), x)