YOLO / yolo /utils /dataset_utils.py
henry000's picture
๐Ÿ”’๏ธ [Update] Dataset, can output data without label
1ff7fa6
raw
history blame
4.38 kB
import json
import os
from itertools import chain
from os import path
from typing import Any, Dict, List, Optional, Tuple
import numpy as np
from loguru import logger
from yolo.tools.data_conversion import discretize_categories
def locate_label_paths(dataset_path: str, phase_name: str):
"""
Find the path to label files for a specified dataset and phase(e.g. training).
Args:
dataset_path (str): The path to the root directory of the dataset.
phase_name (str): The name of the phase for which labels are being searched (e.g., "train", "val", "test").
Returns:
Tuple[str, str]: A tuple containing the path to the labels file and the file format ("json" or "txt").
"""
json_labels_path = path.join(dataset_path, "annotations", f"instances_{phase_name}.json")
txt_labels_path = path.join(dataset_path, "labels", phase_name)
if path.isfile(json_labels_path):
return json_labels_path, "json"
elif path.isdir(txt_labels_path):
txt_files = [f for f in os.listdir(txt_labels_path) if f.endswith(".txt")]
if txt_files:
return txt_labels_path, "txt"
logger.warning("No labels found in the specified dataset path and phase name.")
return [], None
def create_image_metadata(labels_path: str) -> Tuple[Dict[str, List], Dict[str, Dict]]:
"""
Create a dictionary containing image information and annotations indexed by image ID.
Args:
labels_path (str): The path to the annotation json file.
Returns:
- annotations_index: A dictionary where keys are image IDs and values are lists of annotations.
- image_info_dict: A dictionary where keys are image file names without extension and values are image information dictionaries.
"""
with open(labels_path, "r") as file:
labels_data = json.load(file)
id_to_idx = discretize_categories(labels_data.get("categories", [])) if "categories" in labels_data else None
annotations_index = organize_annotations_by_image(labels_data, id_to_idx) # check lookup is a good name?
image_info_dict = {path.splitext(img["file_name"])[0]: img for img in labels_data["images"]}
return annotations_index, image_info_dict
def organize_annotations_by_image(data: Dict[str, Any], id_to_idx: Optional[Dict[int, int]]):
"""
Use image index to lookup every annotations
Args:
data (Dict[str, Any]): A dictionary containing annotation data.
Returns:
Dict[int, List[Dict[str, Any]]]: A dictionary where keys are image IDs and values are lists of annotations.
Annotations with "iscrowd" set to True are excluded from the index.
"""
annotation_lookup = {}
for anno in data["annotations"]:
if anno["iscrowd"]:
continue
image_id = anno["image_id"]
if id_to_idx:
anno["category_id"] = id_to_idx[anno["category_id"]]
if image_id not in annotation_lookup:
annotation_lookup[image_id] = []
annotation_lookup[image_id].append(anno)
return annotation_lookup
def scale_segmentation(
annotations: List[Dict[str, Any]], image_dimensions: Dict[str, int]
) -> Optional[List[List[float]]]:
"""
Scale the segmentation data based on image dimensions and return a list of scaled segmentation data.
Args:
annotations (List[Dict[str, Any]]): A list of annotation dictionaries.
image_dimensions (Dict[str, int]): A dictionary containing image dimensions (height and width).
Returns:
Optional[List[List[float]]]: A list of scaled segmentation data, where each sublist contains category_id followed by scaled (x, y) coordinates.
"""
if annotations is None:
return None
seg_array_with_cat = []
h, w = image_dimensions["height"], image_dimensions["width"]
for anno in annotations:
category_id = anno["category_id"]
seg_list = [item for sublist in anno["segmentation"] for item in sublist]
scaled_seg_data = (
np.array(seg_list).reshape(-1, 2) / [w, h]
).tolist() # make the list group in x, y pairs and scaled with image width, height
scaled_flat_seg_data = [category_id] + list(chain(*scaled_seg_data)) # flatten the scaled_seg_data list
seg_array_with_cat.append(scaled_flat_seg_data)
return seg_array_with_cat