|
from typing import Any, Dict, List, Tuple |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
from loguru import logger |
|
from torch import Tensor, nn |
|
from torch.nn import BCEWithLogitsLoss |
|
|
|
from yolo.config.config import Config |
|
from yolo.utils.bounding_box_utils import ( |
|
AnchorBoxConverter, |
|
BoxMatcher, |
|
calculate_iou, |
|
generate_anchors, |
|
) |
|
from yolo.utils.module_utils import divide_into_chunks |
|
|
|
|
|
class BCELoss(nn.Module): |
|
def __init__(self) -> None: |
|
super().__init__() |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.bce = BCEWithLogitsLoss(pos_weight=torch.tensor([1.0], device=device), reduction="none") |
|
|
|
def forward(self, predicts_cls: Tensor, targets_cls: Tensor, cls_norm: Tensor) -> Any: |
|
return self.bce(predicts_cls, targets_cls).sum() / cls_norm |
|
|
|
|
|
class BoxLoss(nn.Module): |
|
def __init__(self) -> None: |
|
super().__init__() |
|
|
|
def forward( |
|
self, predicts_bbox: Tensor, targets_bbox: Tensor, valid_masks: Tensor, box_norm: Tensor, cls_norm: Tensor |
|
) -> Any: |
|
valid_bbox = valid_masks[..., None].expand(-1, -1, 4) |
|
picked_predict = predicts_bbox[valid_bbox].view(-1, 4) |
|
picked_targets = targets_bbox[valid_bbox].view(-1, 4) |
|
|
|
iou = calculate_iou(picked_predict, picked_targets, "ciou").diag() |
|
loss_iou = 1.0 - iou |
|
loss_iou = (loss_iou * box_norm).sum() / cls_norm |
|
return loss_iou |
|
|
|
|
|
class DFLoss(nn.Module): |
|
def __init__(self, anchors: Tensor, scaler: Tensor, reg_max: int) -> None: |
|
super().__init__() |
|
self.anchors = anchors |
|
self.scaler = scaler |
|
self.reg_max = reg_max |
|
|
|
def forward( |
|
self, predicts_anc: Tensor, targets_bbox: Tensor, valid_masks: Tensor, box_norm: Tensor, cls_norm: Tensor |
|
) -> Any: |
|
valid_bbox = valid_masks[..., None].expand(-1, -1, 4) |
|
bbox_lt, bbox_rb = targets_bbox.chunk(2, -1) |
|
anchors_norm = (self.anchors / self.scaler[:, None])[None] |
|
targets_dist = torch.cat(((anchors_norm - bbox_lt), (bbox_rb - anchors_norm)), -1).clamp(0, self.reg_max - 1.01) |
|
picked_targets = targets_dist[valid_bbox].view(-1) |
|
picked_predict = predicts_anc[valid_bbox].view(-1, self.reg_max) |
|
|
|
label_left, label_right = picked_targets.floor(), picked_targets.floor() + 1 |
|
weight_left, weight_right = label_right - picked_targets, picked_targets - label_left |
|
|
|
loss_left = F.cross_entropy(picked_predict, label_left.to(torch.long), reduction="none") |
|
loss_right = F.cross_entropy(picked_predict, label_right.to(torch.long), reduction="none") |
|
loss_dfl = loss_left * weight_left + loss_right * weight_right |
|
loss_dfl = loss_dfl.view(-1, 4).mean(-1) |
|
loss_dfl = (loss_dfl * box_norm).sum() / cls_norm |
|
return loss_dfl |
|
|
|
|
|
class YOLOLoss: |
|
def __init__(self, cfg: Config) -> None: |
|
self.reg_max = cfg.model.anchor.reg_max |
|
self.class_num = cfg.model.class_num |
|
self.image_size = list(cfg.image_size) |
|
self.strides = cfg.model.anchor.strides |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
self.anchors, self.scaler = generate_anchors(self.image_size, self.strides, device) |
|
|
|
self.cls = BCELoss() |
|
self.dfl = DFLoss(self.anchors, self.scaler, self.reg_max) |
|
self.iou = BoxLoss() |
|
|
|
self.matcher = BoxMatcher(cfg.task.loss.matcher, self.class_num, self.anchors) |
|
self.box_converter = AnchorBoxConverter(cfg.model, self.image_size, device) |
|
|
|
def separate_anchor(self, anchors): |
|
""" |
|
separate anchor and bbouding box |
|
""" |
|
anchors_cls, anchors_box = torch.split(anchors, (self.class_num, 4), dim=-1) |
|
anchors_box = anchors_box / self.scaler[None, :, None] |
|
return anchors_cls, anchors_box |
|
|
|
def __call__(self, predicts: List[Tensor], targets: Tensor) -> Tuple[Tensor, Tensor, Tensor]: |
|
|
|
|
|
predicts, predicts_anc = self.box_converter(predicts) |
|
|
|
|
|
align_targets, valid_masks = self.matcher(targets, predicts) |
|
|
|
targets_cls, targets_bbox = self.separate_anchor(align_targets) |
|
predicts_cls, predicts_bbox = self.separate_anchor(predicts) |
|
|
|
cls_norm = targets_cls.sum() |
|
box_norm = targets_cls.sum(-1)[valid_masks] |
|
|
|
|
|
loss_cls = self.cls(predicts_cls, targets_cls, cls_norm) |
|
|
|
loss_iou = self.iou(predicts_bbox, targets_bbox, valid_masks, box_norm, cls_norm) |
|
|
|
loss_dfl = self.dfl(predicts_anc, targets_bbox, valid_masks, box_norm, cls_norm) |
|
|
|
return loss_iou, loss_dfl, loss_cls |
|
|
|
|
|
class DualLoss: |
|
def __init__(self, cfg: Config) -> None: |
|
self.loss = YOLOLoss(cfg) |
|
self.aux_rate = cfg.task.loss.aux |
|
|
|
self.iou_rate = cfg.task.loss.objective["BoxLoss"] |
|
self.dfl_rate = cfg.task.loss.objective["DFLoss"] |
|
self.cls_rate = cfg.task.loss.objective["BCELoss"] |
|
|
|
def __call__(self, predicts: List[Tensor], targets: Tensor) -> Tuple[Tensor, Dict[str, Tensor]]: |
|
|
|
|
|
predicts = divide_into_chunks(predicts[0], 2) |
|
aux_iou, aux_dfl, aux_cls = self.loss(predicts[0], targets) |
|
main_iou, main_dfl, main_cls = self.loss(predicts[1], targets) |
|
|
|
loss_dict = { |
|
"BoxLoss": self.iou_rate * (aux_iou * self.aux_rate + main_iou), |
|
"DFLoss": self.dfl_rate * (aux_dfl * self.aux_rate + main_dfl), |
|
"BCELoss": self.cls_rate * (aux_cls * self.aux_rate + main_cls), |
|
} |
|
loss_sum = sum(list(loss_dict.values())) / len(loss_dict) |
|
return loss_sum, loss_dict |
|
|
|
|
|
def get_loss_function(cfg: Config) -> YOLOLoss: |
|
loss_function = DualLoss(cfg) |
|
logger.info("β
Success load loss function") |
|
return loss_function |
|
|