YOLO / yolo /utils /deploy_utils.py
henry000's picture
πŸ› [Fix] display emoji bugs, change it to shortcode
802cb12
raw
history blame
4.28 kB
from pathlib import Path
import torch
from torch import Tensor
from yolo.config.config import Config
from yolo.model.yolo import create_model
from yolo.utils.logger import logger
class FastModelLoader:
def __init__(self, cfg: Config):
self.cfg = cfg
self.compiler = cfg.task.fast_inference
self.class_num = cfg.dataset.class_num
self._validate_compiler()
if cfg.weight == True:
cfg.weight = Path("weights") / f"{cfg.model.name}.pt"
self.model_path = f"{Path(cfg.weight).stem}.{self.compiler}"
def _validate_compiler(self):
if self.compiler not in ["onnx", "trt", "deploy"]:
logger.warning(f":warning: Compiler '{self.compiler}' is not supported. Using original model.")
self.compiler = None
if self.cfg.device == "mps" and self.compiler == "trt":
logger.warning(":red_apple: TensorRT does not support MPS devices. Using original model.")
self.compiler = None
def load_model(self, device):
if self.compiler == "onnx":
return self._load_onnx_model(device)
elif self.compiler == "trt":
return self._load_trt_model().to(device)
elif self.compiler == "deploy":
self.cfg.model.model.auxiliary = {}
return create_model(self.cfg.model, class_num=self.class_num, weight_path=self.cfg.weight).to(device)
def _load_onnx_model(self, device):
from onnxruntime import InferenceSession
def onnx_forward(self: InferenceSession, x: Tensor):
x = {self.get_inputs()[0].name: x.cpu().numpy()}
model_outputs, layer_output = [], []
for idx, predict in enumerate(self.run(None, x)):
layer_output.append(torch.from_numpy(predict).to(device))
if idx % 3 == 2:
model_outputs.append(layer_output)
layer_output = []
if len(model_outputs) == 6:
model_outputs = model_outputs[:3]
return {"Main": model_outputs}
InferenceSession.__call__ = onnx_forward
if device == "cpu":
providers = ["CPUExecutionProvider"]
else:
providers = ["CUDAExecutionProvider"]
try:
ort_session = InferenceSession(self.model_path, providers=providers)
logger.info(":rocket: Using ONNX as MODEL frameworks!")
except Exception as e:
logger.warning(f"🈳 Error loading ONNX model: {e}")
ort_session = self._create_onnx_model(providers)
return ort_session
def _create_onnx_model(self, providers):
from onnxruntime import InferenceSession
from torch.onnx import export
model = create_model(self.cfg.model, class_num=self.class_num, weight_path=self.cfg.weight).eval()
dummy_input = torch.ones((1, 3, *self.cfg.image_size))
export(
model,
dummy_input,
self.model_path,
input_names=["input"],
output_names=["output"],
dynamic_axes={"input": {0: "batch_size"}, "output": {0: "batch_size"}},
)
logger.info(f":inbox_tray: ONNX model saved to {self.model_path}")
return InferenceSession(self.model_path, providers=providers)
def _load_trt_model(self):
from torch2trt import TRTModule
try:
model_trt = TRTModule()
model_trt.load_state_dict(torch.load(self.model_path))
logger.info(":rocket: Using TensorRT as MODEL frameworks!")
except FileNotFoundError:
logger.warning(f"🈳 No found model weight at {self.model_path}")
model_trt = self._create_trt_model()
return model_trt
def _create_trt_model(self):
from torch2trt import torch2trt
model = create_model(self.cfg.model, class_num=self.class_num, weight_path=self.cfg.weight).eval()
dummy_input = torch.ones((1, 3, *self.cfg.image_size)).cuda()
logger.info(f"♻️ Creating TensorRT model")
model_trt = torch2trt(model.cuda(), [dummy_input])
torch.save(model_trt.state_dict(), self.model_path)
logger.info(f":inbox_tray: TensorRT model saved to {self.model_path}")
return model_trt