YOLO / tests /conftest.py
henry000's picture
✅ [Fix] python version error & default device
bd0409b
import sys
from pathlib import Path
import pytest
import torch
from hydra import compose, initialize
from lightning import Trainer
project_root = Path(__file__).resolve().parent.parent
sys.path.append(str(project_root))
from yolo import Anc2Box, Config, Vec2Box, create_converter, create_model
from yolo.model.yolo import YOLO
from yolo.tools.data_loader import StreamDataLoader, create_dataloader
from yolo.tools.dataset_preparation import prepare_dataset
from yolo.utils.logging_utils import set_seed, setup
def pytest_configure(config):
config.addinivalue_line("markers", "requires_cuda: mark test to run only if CUDA is available")
def get_cfg(overrides=[]) -> Config:
config_path = "../yolo/config"
with initialize(config_path=config_path, version_base=None):
cfg: Config = compose(config_name="config", overrides=overrides)
set_seed(cfg.lucky_number)
return cfg
@pytest.fixture(scope="session")
def train_cfg() -> Config:
return get_cfg(overrides=["task=train", "dataset=mock"])
@pytest.fixture(scope="session")
def validation_cfg():
return get_cfg(overrides=["task=validation", "dataset=mock"])
@pytest.fixture(scope="session")
def inference_cfg():
return get_cfg(overrides=["task=inference"])
@pytest.fixture(scope="session")
def inference_v7_cfg():
return get_cfg(overrides=["task=inference", "model=v7"])
@pytest.fixture(scope="session")
def device():
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
@pytest.fixture(scope="session")
def model(train_cfg: Config, device) -> YOLO:
model = create_model(train_cfg.model)
return model.to(device)
@pytest.fixture(scope="session")
def model_v7(inference_v7_cfg: Config, device) -> YOLO:
model = create_model(inference_v7_cfg.model)
return model.to(device)
@pytest.fixture(scope="session")
def solver(train_cfg: Config) -> Trainer:
train_cfg.use_wandb = False
callbacks, loggers, save_path = setup(train_cfg)
trainer = Trainer(
accelerator="auto",
max_epochs=getattr(train_cfg.task, "epoch", None),
precision="16-mixed",
callbacks=callbacks,
logger=loggers,
log_every_n_steps=1,
gradient_clip_val=10,
deterministic=True,
default_root_dir=save_path,
)
return trainer
@pytest.fixture(scope="session")
def vec2box(train_cfg: Config, model: YOLO, device) -> Vec2Box:
vec2box = create_converter(train_cfg.model.name, model, train_cfg.model.anchor, train_cfg.image_size, device)
return vec2box
@pytest.fixture(scope="session")
def anc2box(inference_v7_cfg: Config, model: YOLO, device) -> Anc2Box:
anc2box = create_converter(
inference_v7_cfg.model.name, model, inference_v7_cfg.model.anchor, inference_v7_cfg.image_size, device
)
return anc2box
@pytest.fixture(scope="session")
def train_dataloader(train_cfg: Config):
prepare_dataset(train_cfg.dataset, task="train")
return create_dataloader(train_cfg.task.data, train_cfg.dataset, train_cfg.task.task)
@pytest.fixture(scope="session")
def validation_dataloader(validation_cfg: Config):
prepare_dataset(validation_cfg.dataset, task="val")
return create_dataloader(validation_cfg.task.data, validation_cfg.dataset, validation_cfg.task.task)
@pytest.fixture(scope="session")
def file_stream_data_loader(inference_cfg: Config):
return StreamDataLoader(inference_cfg.task.data)
@pytest.fixture(scope="session")
def file_stream_data_loader_v7(inference_v7_cfg: Config):
return StreamDataLoader(inference_v7_cfg.task.data)
@pytest.fixture(scope="session")
def directory_stream_data_loader(inference_cfg: Config):
inference_cfg.task.data.source = "tests/data/images/train"
return StreamDataLoader(inference_cfg.task.data)