π [Fix] #56 bugs, create_converter -> Vec2Box
Browse files- demo/hf_demo.py +9 -9
demo/hf_demo.py
CHANGED
@@ -11,7 +11,7 @@ from yolo import (
|
|
11 |
AugmentationComposer,
|
12 |
NMSConfig,
|
13 |
PostProccess,
|
14 |
-
|
15 |
create_model,
|
16 |
draw_bboxes,
|
17 |
)
|
@@ -25,22 +25,22 @@ def load_model(model_name, device):
|
|
25 |
model_cfg.model.auxiliary = {}
|
26 |
model = create_model(model_cfg, True)
|
27 |
model.to(device).eval()
|
28 |
-
return model
|
29 |
|
30 |
|
31 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
-
model = load_model(DEFAULT_MODEL, device)
|
33 |
-
|
34 |
-
class_list = OmegaConf.load("yolo/config/
|
35 |
|
36 |
transform = AugmentationComposer([])
|
37 |
|
38 |
|
39 |
def predict(model_name, image, nms_confidence, nms_iou):
|
40 |
-
global DEFAULT_MODEL, model, device,
|
41 |
if model_name != DEFAULT_MODEL:
|
42 |
-
model = load_model(model_name, device)
|
43 |
-
|
44 |
DEFAULT_MODEL = model_name
|
45 |
|
46 |
image_tensor, _, rev_tensor = transform(image)
|
@@ -49,7 +49,7 @@ def predict(model_name, image, nms_confidence, nms_iou):
|
|
49 |
rev_tensor = rev_tensor.to(device)[None]
|
50 |
|
51 |
nms_config = NMSConfig(nms_confidence, nms_iou)
|
52 |
-
post_proccess = PostProccess(
|
53 |
|
54 |
with torch.no_grad():
|
55 |
predict = model(image_tensor)
|
|
|
11 |
AugmentationComposer,
|
12 |
NMSConfig,
|
13 |
PostProccess,
|
14 |
+
create_converter,
|
15 |
create_model,
|
16 |
draw_bboxes,
|
17 |
)
|
|
|
25 |
model_cfg.model.auxiliary = {}
|
26 |
model = create_model(model_cfg, True)
|
27 |
model.to(device).eval()
|
28 |
+
return model, model_cfg
|
29 |
|
30 |
|
31 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
+
model, model_cfg = load_model(DEFAULT_MODEL, device)
|
33 |
+
converter = create_converter(model_cfg.name, model, model_cfg.anchor, IMAGE_SIZE, device)
|
34 |
+
class_list = OmegaConf.load("yolo/config/dataset/coco.yaml").class_list
|
35 |
|
36 |
transform = AugmentationComposer([])
|
37 |
|
38 |
|
39 |
def predict(model_name, image, nms_confidence, nms_iou):
|
40 |
+
global DEFAULT_MODEL, model, device, converter, class_list, post_proccess
|
41 |
if model_name != DEFAULT_MODEL:
|
42 |
+
model, model_cfg = load_model(model_name, device)
|
43 |
+
converter = create_converter(model_cfg.name, model, model_cfg.anchor, IMAGE_SIZE, device)
|
44 |
DEFAULT_MODEL = model_name
|
45 |
|
46 |
image_tensor, _, rev_tensor = transform(image)
|
|
|
49 |
rev_tensor = rev_tensor.to(device)[None]
|
50 |
|
51 |
nms_config = NMSConfig(nms_confidence, nms_iou)
|
52 |
+
post_proccess = PostProccess(converter, nms_config)
|
53 |
|
54 |
with torch.no_grad():
|
55 |
predict = model(image_tensor)
|