henry000 commited on
Commit
0f23de9
Β·
1 Parent(s): 4a690bb

πŸ“ [Update] document of get start, turn table->tabs

Browse files
docs/0_get_start/0_quick_start.rst CHANGED
@@ -6,6 +6,7 @@ Quick Start
6
  If more detailed modifications are needed, custom content should be modularized as much as possible to avoid extensive code modifications.
7
 
8
  .. _QuickInstallYOLO:
 
9
  Install YOLO
10
  ------------
11
 
 
6
  If more detailed modifications are needed, custom content should be modularized as much as possible to avoid extensive code modifications.
7
 
8
  .. _QuickInstallYOLO:
9
+
10
  Install YOLO
11
  ------------
12
 
docs/0_get_start/1_introduction.rst CHANGED
@@ -1,9 +1,66 @@
1
  What is YOLO
2
  ============
3
 
 
4
 
5
- Forward Proccess
6
- ----------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
  Loss Function
9
  -------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  What is YOLO
2
  ============
3
 
4
+ ``YOLO`` (You Only Look Once) is a state-of-the-art, real-time object detection system. It is designed to predict bounding boxes and class probabilities for objects in an image with high accuracy and speed. YOLO models, including the latest YOLOv9, are known for their efficiency in detecting objects in a single forward pass through the network, making them highly suitable for real-time applications.
5
 
6
+ YOLOv9 introduces improvements in both architecture and loss functions to enhance prediction accuracy and inference speed.
7
+
8
+ Forward Process
9
+ ---------------
10
+
11
+ The forward process of YOLOv9 can be visualized as follows:
12
+
13
+ .. mermaid::
14
+
15
+ graph LR
16
+ subgraph YOLOv9
17
+ Auxiliary
18
+ AP["Auxiliary Prediction"]
19
+ end
20
+ BackBone-->FPN;
21
+ FPN-->PAN;
22
+ PAN-->MP["Main Prediction"];
23
+ BackBone-->Auxiliary;
24
+ Auxiliary-->AP;
25
+
26
+ - **BackBone**: Extracts features from the input image.
27
+ - **FPN (Feature Pyramid Network)**: Aggregates features at different scales.
28
+ - **PAN (Region Proposal Network)**: Proposes regions of interest.
29
+ - **Main Prediction**: The primary detection output.
30
+ - **Auxiliary Prediction**: Additional predictions to assist the main prediction.
31
 
32
  Loss Function
33
  -------------
34
+
35
+ The loss function of YOLOv9 combines several components to optimize the model's performance:
36
+
37
+ .. mermaid::
38
+
39
+ flowchart LR
40
+ gtb-->cls
41
+ gtb["Ground Truth"]-->iou
42
+ pdm-.->cls["Max Class"]
43
+ pdm["Main Prediction"]-.->iou["Closest IoU"]
44
+ pdm-.->anc["box in anchor"]
45
+ cls-->gt
46
+ iou-->gt["Matched GT Box"]
47
+ anc-.->gt
48
+
49
+ gt-->Liou["IoU Loss"]
50
+ pdm-->Liou
51
+ pdm-->Lbce
52
+ gt-->Lbce["BCE Loss"]
53
+ gt-->Ldfl["DFL Loss"]
54
+ pdm-->Ldfl
55
+
56
+ Lbce-->ML
57
+ Liou-->ML
58
+ Ldfl-->ML["Total Loss"]
59
+
60
+ - **Ground Truth**: The actual labels and bounding boxes in the dataset.
61
+ - **Main Prediction**: The model's predicted bounding boxes and class scores.
62
+ - **IoU (Intersection over Union)**: Measures the overlap between the predicted and ground truth boxes.
63
+ - **BCE (Binary Cross-Entropy) Loss**: Used for class prediction.
64
+ - **DFL (Distribution Focal Loss)**: Used for improving the precision of bounding box regression.
65
+
66
+ By optimizing these components, YOLOv9 aims to achieve high accuracy and robustness in object detection tasks.
docs/0_get_start/2_installations.rst CHANGED
@@ -10,26 +10,42 @@ Torch Requirements
10
 
11
  The following table summarizes the torch requirements for different operating systems and hardware configurations:
12
 
13
- .. flat-table::
14
-
15
- * - OS
16
- - :cspan:`1` Linux
17
- - :cspan:`1` MacOS
18
- - :cspan:`1` Windows
19
- * - Hardware
20
- - CUDA
21
- - CPU
22
- - MPS
23
- - CPU
24
- - CUDA
25
- - CPU
26
- * - PyTorch
27
- - 1.12+
28
- - 1.12+
29
- - 1.12+
30
- - 2.3+
31
- - [WIP]
32
- - [WIP]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  Git & GitHub
35
  ------------
 
10
 
11
  The following table summarizes the torch requirements for different operating systems and hardware configurations:
12
 
13
+
14
+ .. tabs::
15
+
16
+ .. tab:: Linux
17
+
18
+ .. tabs::
19
+
20
+ .. tab:: CUDA
21
+
22
+ PyTorch: 1.12+
23
+
24
+ .. tab:: CPU
25
+
26
+ PyTorch: 1.12+
27
+
28
+ .. tab:: MacOS
29
+
30
+ .. tabs::
31
+
32
+ .. tab:: MPS
33
+
34
+ PyTorch: 2.2+
35
+ .. tab:: CPU
36
+ PyTorch: 2.2+
37
+ .. tab:: Windows
38
+
39
+ .. tabs::
40
+
41
+ .. tab:: CUDA
42
+
43
+ [WIP]
44
+
45
+ .. tab:: CPU
46
+
47
+ [WIP]
48
+
49
 
50
  Git & GitHub
51
  ------------