π [Merge] branch 'TRAIN' into TEST
Browse files- examples/example_train.py +1 -1
- yolo/config/hyper/default.yaml +1 -1
- yolo/tools/trainer.py +29 -14
- yolo/utils/loss.py +11 -7
examples/example_train.py
CHANGED
@@ -28,7 +28,7 @@ def main(cfg: Config):
|
|
28 |
# TODO: get_device or rank, for DDP mode
|
29 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
30 |
|
31 |
-
trainer = Trainer(model, cfg
|
32 |
trainer.train(dataloader, 10)
|
33 |
|
34 |
|
|
|
28 |
# TODO: get_device or rank, for DDP mode
|
29 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
30 |
|
31 |
+
trainer = Trainer(model, cfg, device)
|
32 |
trainer.train(dataloader, 10)
|
33 |
|
34 |
|
yolo/config/hyper/default.yaml
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
data:
|
2 |
-
batch_size:
|
3 |
shuffle: True
|
4 |
num_workers: 4
|
5 |
pin_memory: True
|
|
|
1 |
data:
|
2 |
+
batch_size: 8
|
3 |
shuffle: True
|
4 |
num_workers: 4
|
5 |
pin_memory: True
|
yolo/tools/trainer.py
CHANGED
@@ -1,48 +1,63 @@
|
|
1 |
import torch
|
2 |
from loguru import logger
|
|
|
|
|
3 |
from tqdm import tqdm
|
4 |
|
5 |
-
from yolo.config.config import TrainConfig
|
6 |
from yolo.model.yolo import YOLO
|
7 |
from yolo.tools.model_helper import EMA, get_optimizer, get_scheduler
|
8 |
from yolo.utils.loss import get_loss_function
|
9 |
|
10 |
|
11 |
class Trainer:
|
12 |
-
def __init__(self, model: YOLO,
|
|
|
|
|
13 |
self.model = model.to(device)
|
14 |
self.device = device
|
15 |
self.optimizer = get_optimizer(model.parameters(), train_cfg.optimizer)
|
16 |
self.scheduler = get_scheduler(self.optimizer, train_cfg.scheduler)
|
17 |
-
self.loss_fn = get_loss_function()
|
18 |
|
19 |
if train_cfg.ema.get("enabled", False):
|
20 |
self.ema = EMA(model, decay=train_cfg.ema.decay)
|
21 |
else:
|
22 |
self.ema = None
|
|
|
23 |
|
24 |
-
def train_one_batch(self, data, targets):
|
25 |
data, targets = data.to(self.device), targets.to(self.device)
|
26 |
self.optimizer.zero_grad()
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
if self.ema:
|
32 |
self.ema.update()
|
|
|
33 |
return loss.item()
|
34 |
|
35 |
def train_one_epoch(self, dataloader):
|
36 |
self.model.train()
|
37 |
total_loss = 0
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
self.scheduler
|
|
|
43 |
return total_loss / len(dataloader)
|
44 |
|
45 |
-
def save_checkpoint(self, epoch, filename="checkpoint.pt"):
|
46 |
checkpoint = {
|
47 |
"epoch": epoch,
|
48 |
"model_state_dict": self.model.state_dict(),
|
|
|
1 |
import torch
|
2 |
from loguru import logger
|
3 |
+
from torch import Tensor
|
4 |
+
from torch.cuda.amp import GradScaler, autocast
|
5 |
from tqdm import tqdm
|
6 |
|
7 |
+
from yolo.config.config import Config, TrainConfig
|
8 |
from yolo.model.yolo import YOLO
|
9 |
from yolo.tools.model_helper import EMA, get_optimizer, get_scheduler
|
10 |
from yolo.utils.loss import get_loss_function
|
11 |
|
12 |
|
13 |
class Trainer:
|
14 |
+
def __init__(self, model: YOLO, cfg: Config, device):
|
15 |
+
train_cfg: TrainConfig = cfg.hyper.train
|
16 |
+
|
17 |
self.model = model.to(device)
|
18 |
self.device = device
|
19 |
self.optimizer = get_optimizer(model.parameters(), train_cfg.optimizer)
|
20 |
self.scheduler = get_scheduler(self.optimizer, train_cfg.scheduler)
|
21 |
+
self.loss_fn = get_loss_function(cfg)
|
22 |
|
23 |
if train_cfg.ema.get("enabled", False):
|
24 |
self.ema = EMA(model, decay=train_cfg.ema.decay)
|
25 |
else:
|
26 |
self.ema = None
|
27 |
+
self.scaler = GradScaler()
|
28 |
|
29 |
+
def train_one_batch(self, data: Tensor, targets: Tensor, progress: tqdm):
|
30 |
data, targets = data.to(self.device), targets.to(self.device)
|
31 |
self.optimizer.zero_grad()
|
32 |
+
|
33 |
+
with autocast():
|
34 |
+
outputs = self.model(data)
|
35 |
+
loss, loss_item = self.loss_fn(outputs, targets)
|
36 |
+
loss_iou, loss_dfl, loss_cls = loss_item
|
37 |
+
|
38 |
+
progress.set_description(f"Loss IoU: {loss_iou:.5f}, DFL: {loss_dfl:.5f}, CLS: {loss_cls:.5f}")
|
39 |
+
|
40 |
+
self.scaler.scale(loss).backward()
|
41 |
+
self.scaler.step(self.optimizer)
|
42 |
+
self.scaler.update()
|
43 |
+
|
44 |
if self.ema:
|
45 |
self.ema.update()
|
46 |
+
|
47 |
return loss.item()
|
48 |
|
49 |
def train_one_epoch(self, dataloader):
|
50 |
self.model.train()
|
51 |
total_loss = 0
|
52 |
+
with tqdm(dataloader, desc="Training") as progress:
|
53 |
+
for data, targets in progress:
|
54 |
+
loss = self.train_one_batch(data, targets, progress)
|
55 |
+
total_loss += loss
|
56 |
+
if self.scheduler:
|
57 |
+
self.scheduler.step()
|
58 |
return total_loss / len(dataloader)
|
59 |
|
60 |
+
def save_checkpoint(self, epoch: int, filename="checkpoint.pt"):
|
61 |
checkpoint = {
|
62 |
"epoch": epoch,
|
63 |
"model_state_dict": self.model.state_dict(),
|
yolo/utils/loss.py
CHANGED
@@ -17,10 +17,6 @@ from yolo.tools.bbox_helper import (
|
|
17 |
)
|
18 |
|
19 |
|
20 |
-
def get_loss_function(*args, **kwargs):
|
21 |
-
raise NotImplementedError
|
22 |
-
|
23 |
-
|
24 |
class BCELoss(nn.Module):
|
25 |
def __init__(self) -> None:
|
26 |
super().__init__()
|
@@ -144,7 +140,9 @@ class YOLOLoss:
|
|
144 |
# Batch_Size x (Anchor + Class) x H x W
|
145 |
# TODO: check datatype, why targets has a little bit error with origin version
|
146 |
predicts, predicts_anc = self.parse_predicts(predicts[0])
|
147 |
-
|
|
|
|
|
148 |
|
149 |
align_targets, valid_masks = self.matcher(targets, predicts)
|
150 |
# calculate loss between with instance and predict
|
@@ -162,5 +160,11 @@ class YOLOLoss:
|
|
162 |
## -- DFL -- ##
|
163 |
loss_dfl = self.dfl(predicts_anc, targets_bbox, valid_masks, box_norm, cls_norm)
|
164 |
|
165 |
-
|
166 |
-
return loss_iou, loss_dfl, loss_cls
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
)
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
20 |
class BCELoss(nn.Module):
|
21 |
def __init__(self) -> None:
|
22 |
super().__init__()
|
|
|
140 |
# Batch_Size x (Anchor + Class) x H x W
|
141 |
# TODO: check datatype, why targets has a little bit error with origin version
|
142 |
predicts, predicts_anc = self.parse_predicts(predicts[0])
|
143 |
+
# TODO: Refactor this operator
|
144 |
+
# targets = self.parse_targets(targets, batch_size=predicts.size(0))
|
145 |
+
targets[:, :, 1:] = targets[:, :, 1:] * self.scale_up
|
146 |
|
147 |
align_targets, valid_masks = self.matcher(targets, predicts)
|
148 |
# calculate loss between with instance and predict
|
|
|
160 |
## -- DFL -- ##
|
161 |
loss_dfl = self.dfl(predicts_anc, targets_bbox, valid_masks, box_norm, cls_norm)
|
162 |
|
163 |
+
loss_sum = loss_iou * 0.5 + loss_dfl * 1.5 + loss_cls * 0.5
|
164 |
+
return loss_sum, (loss_iou, loss_dfl, loss_cls)
|
165 |
+
|
166 |
+
|
167 |
+
def get_loss_function(cfg: Config) -> YOLOLoss:
|
168 |
+
loss_function = YOLOLoss(cfg)
|
169 |
+
logger.info("β
Success load loss function")
|
170 |
+
return loss_function
|